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We present a goal-oriented, inverse decision-based design method to find 

satisficing solutions for multiple football helmet components that all work together to 

achieve a set of conflicting goals. The efficacy of the method is illustrated with the design 

of the top region of an American football helmet. The prototype helmet was first 

constructed and tested with a twin-wire drop tower to study the different components 

effect on the system response. The inverse design method is used to design the foam liner 

to dissipate the maximum impact energy, and then the composite shell is designed to 

reduce the weight. The Concept Exploration Framework and the compromise Decision 

Support Problem are used to find satisficing solutions to the system-level performance 

goals under uncertainty. The proposed goal-oriented, inverse decision-based design 

method is generic and will be used to design additional components, the complete helmet, 

and ultimately helmets for other sports. 
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CHAPTER I 

FOUNDATIONS FOR HELMET DESIGN 

1.1 Introduction 

In this thesis, we lay the foundation for football helmet design using a goal-

oriented, inverse decision-based design method for multi-component product systems. 

First, we designed, built, and tested a prototype football helmet in a more traditional 

“trial-and-error” way to gain insight into the complexities of product systems design. 

Most engineers and designers are familiar with the traditional trial-and-error strategy that 

is broken into three phases, namely, the research and design phase, the manufacturing 

phase, and the testing and analysis phase. In many cases, the designer repeats this cycle 

until arriving at a satisfactory or optimal design. For many small-scale systems, this 

approach can be a powerful tool to learn about the prototype and discover critical flaws. 

Unfortunately, this method can also be unpredictable, time consuming, expensive, and 

full of engineering errors. For industrial applications, launch-dates and budget restrictions 

limit the number of design iterations, and thus limit the amount of information gained 

through additional iterations. Typically, the lack of information results in a design change 

after the launch-date, which may be very expensive. 

On the other hand, using a method that employs simulation-based design may 

mitigate the effects of post-launch design changes. Here, the designer or engineer can 

model the prototype geometry with a Computer Aided Design (CAD) program, run 
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computer simulations, and then quickly iterate on design scenarios with a range of 

computational tools. The simulation-based design paradigm does not necessarily reduce 

the time, costs, or uncertainties during the conceptual design phase, but does allow the 

designer to repeat the process in a fraction of the time in the overall design process to 

gain more information about the product, leading to better decisions by the launch-date. 

The obvious trade-off in computational expenses comes with the fewer design changes 

needed late into the development process. Therefore, with respect to football helmet 

design, we require a design method that supports simulation-based design to allow us to 

cycle through many helmet design iterations to arrive at a satisfactory design before 

product launch. 

In Section 1.2, we briefly discuss the motivation behind football helmet design 

including an overview of brain injury related research, football’s concussion crisis, and 

the NFL’s “Play Smart. Play Safe” initiative. Then, in Section 1.3, we review the helmet 

technology advancements made at Mississippi State University (MSU) that form the 

foundation for our prototype helmet. In Section 1.4, we describe the experimental 

investigation of our prototype helmet and discuss the limitations of the traditional trial-

and-error method. We end Chapter 1 with requirements for a method to design helmets 

with simulation-based design while considering uncertainty. In Chapter 2, we introduce 

the goal-oriented, inverse decision-based design method we selected for helmet design. In 

Section 2.1, we introduce and review the design method including the key constructs, 

namely, the Concept Exploration Framework (CEF), the compromise Decision Support 

Problem (cDSP), and solution space exploration with ternary plots. We use the CEF to 

systematically collect and manage component information for design analysis. The cDSP 
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is the core mathematical construct we use to generate design alternatives and then we can 

explore the solution space and make decisions with ternary plots. We demonstrate the 

design method in two ways. In Section 2.2, we demonstrate the CEF and cDSP constructs 

to design a single helmet component, namely, the helmet liner. In Section 2.3, we 

demonstrate the full method to design two components, namely, the foam liner and 

composite shell together with respect to the same set of system-level goals. Finally, in 

Chapter 3, we discuss the limitations in our method and future work. 

1.2 A Historical Overview of the Concussion Crisis in American Football 

American football (at the professional and collegiate level) has been the most 

watched sport in the United States since 1985 [1]. While the sport itself is exciting to 

watch, in recent years mild traumatic brain injury (MTBI), also called concussions, and 

the neurodegenerative brain disease Chronic Traumatic Encephalopathy (CTE) have 

taken the spotlight. In the sport’s early days, the game was rough with little to no 

equipment or rules available to protect the athletes from injury. That was until John T. 

Riddell founded the sports equipment company Riddell in 1929. Riddell critical helmet 

innovations through the 1900’s addressed prevalent injuries such as cauliflower ears, 

broken facial bones, or skull fracture. In the 1930’s they were the first to introduce the 

hard plastic shell, then chinstraps and helmet suspension systems in the 1940’s, 

faceguards in the 50’s and many more developments that make up the iconic football 

helmet we have today [2]. These developments were not engineering efforts, but rather a 

form of necessity-based innovation. 

Head injury related research did not begin until the 1940’s, and primarily focused 

on external effects, such as skull fracture. Researchers at Wayne State University [3] 
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dropped human cadavers onto steel slabs to study the effects of impact force and location 

to skull fracture and brain damage. Data collected from the human cadaver research led 

to the development of a foundational head injury metric in 1960, namely, the Wayne 

State Tolerance Curve (WSTC) [4]. We show the modified WSTC, including sub-

concussive data from [5] in Figure 1.1 below. The curve shows the correlation between 

linear acceleration (g levels), duration of impact, and risk to human life. From the WSTC 

we see that g levels, or sustained durations, above the line would result in a loss of human 

life.   

 

Figure 1.1 The Wayne State Tolerance Curve showing an early estimation of the 

effective acceleration vs. acceleration duration tolerance limit for the 

human brain [4]. 

Researchers at Wayne State developed the WSTC in response to the high number 

of fatalities and injuries in the automotive industry. The sports industry experienced a 

similar trend, with a high number of injuries each season and 32 fatalities in 1968 [6]. 

Helmet technology at the time was not sufficient to protect the players that led to the 
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establishment of a set of helmet safety standards through the National Operating 

Committee on Standards for Athletic Equipment (NOCSAE) in 1970. The first set of 

NOCSAE standards were inspired by automotive industry standards and used head injury 

metrics derived from the WSTC. The primary head injury metric used in all NOCSAE 

standards in the Gadd Severity Index, or simply the “Severity Index” (SI) [7]. The SI is 

based on the following equation, 

𝑆𝐼 =  ∫ 𝑎(𝑡)2.5𝑑𝑡
𝑡

0
  (1.1) 

were 𝑎(𝑡) is the resultant acceleration time history normalized by gravity (G’s), 𝑡 is the 

duration of the impact in seconds, and 2.5 is the power-weighting factor derived from the 

WSTC. The SI is measured during a NOCSAE standard twin-wire drop test [8] where a 

standard instrumented NOCSAE headform is dropped onto a test anvil from 2, 3, 4, and 

5-foot heights. A standard NOCSAE headform is instrumented with a tri-axial 

accelerometer at the center of gravity that records linear acceleration. The resultant 

acceleration time history is used to calculate the SI. According to NOCSAE standards 

[8], no test should exceed a SI value of 300 at the lowest impact height, and no test 

should exceed a SI value of 1200 at the higher impact heights. While the SI is still used in 

NOCSAE standards today, Versace et al. [9] criticized the SI injury metric because it 

does not provide a distinction between the fitted WSTC data, severity scaling, and the 

magnitude of the acceleration pulse, or “effective acceleration”. They proposed a 

variation of the SI that focuses only on the effective acceleration, known as the Head 

Injury Criterion (HIC). The HIC has its roots in the work of Gurdjian et al. [10-12] who 

developed head injury tolerance data from live animal and human cadaver experiments 
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and used the HIC functional to evaluate sports helmets. The HIC functional was formally 

derived by Hutchinson et al. [13] as, 

𝐻𝐼𝐶 = [(𝑡2 − 𝑡1){
1

(𝑡2−𝑡1)
∫ 𝑎(𝑡)𝑑𝑡}

𝑡2

𝑡1

2.5
]    (1.2) 

where 𝑡1 and 𝑡2 represent the start and finish of the effective acceleration peak, 𝑎(𝑡) is 

the resultant acceleration time history, and 2.5 is the same power-weighting factor 

derived from the WSTC. The HIC injury metric is most commonly used in the 

certification of newly manufactured vehicles. Prasad et al. [14] used the HIC functional 

to develop a Head Injury Risk Curve (HIRC). According to the HIRC, 50% probability of 

life-threatening brain injury can result from a HIC value around 1400, where only 18% 

probability from a HIC value of 1000. In this thesis, we use both the SI and HIC injury 

metrics, along with the Peak-G, to assess the performance of an American football helmet 

prototype with our own twin-wire drop tower test system and the NOCSAE standard 

drop-test method. While the SI, HIC, and Peak-G injury metrics may be commonly used 

to certify and evaluate helmet performance, it is important to remember that these injury 

metrics and NOCSAE standards are approximations and can only predict the risk of skull 

fracture with respect to linear acceleration. They do not provide insight into the brains 

response or predict the risk of MTBI or CTE. To engineer better and safer football 

helmets, we must understand the biomechanics of the brain and develop injury metrics 

that can predict MTBI. 

 Several researchers have worked to understand the biomechanics of the brain 

under impact loading. Some of the foundational assumptions for brain related research 

were established by Holbourn et al. [15] in 1943. From their prospective, they assumed 

the brain material to be of uniform density, nearly incompressible but having a small 
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modulus of rigidity. Because of the brain’s incredibly high bulk modulus 

(incompressibility) yet low modulus of rigidity, they predicted concussions were either a 

result of skull fracture or shear strain in the brain. Holbourn hypothesized that the 

translational accelerations from impact were non-injurious while the rotational 

accelerations caused the high resultant shear stress and consequently concussions. Using 

the Holbourn hypothesis as a foundation, many researchers have attempted to develop a 

concussive threshold with cadaver experiments, live animal testing, impact reproduction, 

FEA, and on-field observation with instrumented helmets. Ommaya et al. [16] performed 

human cadaver experiments to study the relation between acceleration and intracranial 

pressure. They found that an inverse correlation exists between acceleration and pressure, 

where a shorter acceleration duration would require higher pressures to result in 

concussion and vice versa. They also point out that any system that can increase the time 

duration of an impact in an equal or diminished ratio to the decrease in acceleration or 

pressure will result in a safer system with respect to MTBI. Ommaya et al. [17] went on 

to develop one of the first cerebral concussion tolerance curves with live animal impact 

testing. They were able to produce a tolerance curve for three primate species, and then 

extrapolated the data to include humans. Their curve suggests rotational accelerations 

greater than 1800 rad/s2 would result in a concussion. Pellman et al. [18-19] was able to 

reconstruct 31 NFL game impacts, including 25 diagnosed concussions, using test 

dummies to study linear and rotational accelerations and develop a concussive threshold. 

They determined concussions were primarily related to linear accelerations in the 70-75g 

range and did not find any significant correlation between rotational accelerations and 

head injury. Zhang et al. [20-21] validated the Wayne State University brain injury model 
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(WSUBIM) and then used it to simulate head impacts to propose a new injury threshold 

for MTBI. The WSUBIM Finite Element (FE) head mesh contains 314,500 elements and 

281,800 nodes, it can differentiate between white and grey matter, and contains 

anatomically detailed facial bones. Like Pellman et al. [18-19], they reconstructed 24 

head impacts in their lab with test dummies and hybrid III instrumented headforms. Then, 

they applied the centroid acceleration data to the WSUBIM FE mesh to study different 

stresses in the middle of the brain. They found that shear stresses in the brain stem were 

highly correlated to rotational acceleration. They proposed a new 50% concussion 

probability tolerance limit for shear stress, translational (linear) acceleration, rotational 

acceleration, and HIC values of 7.8 kPa, 85 g, 6000 rad/s2, and 240, respectively. Patton 

et al. [22] used a significantly smaller head mesh, consisting of only 11,158 elements, to 

recreate 27 concussive and 13 non-concussive impacts to develop a strain tolerance limit. 

They suggest a 50% concussive probability from upper strain limits of 0.13, 0.15, and 

0.26 in the thalamus, corpus callosum, and white matter, respectively. While FEA may 

offer precious insight into the brain’s response under impact loading without the risk of 

actual injury, there can still be a great deal of uncertainty in the mesh, material models, 

assumptions, and boundary conditions. Therefore, some researchers instrumented players 

helmets with the Head Impact Telemetry (HIT) system to capture helmet impact data 

from live practices and games. Funk et al. [23] studied 27000 head impacts with only 4 

reported concussions to develop a concussion risk curve from unbiased data using the 

peak-g or HIC injury metrics. They compared their risk curve to the biased curves 

produced by Pellman [18-19] and Zhang [20-21] to reveal their false predictive 

capabilities. Funk finds a 10% MTBI risk from peak linear acceleration, angular 
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acceleration, and HIC values of 165 g, 9000 rad/s2, and 400, respectively. After Funk et 

al. [23] revealed the predictive flaws of biased risk curves, many other researchers 

attempt to nail down the concussive threshold values using the HIT system. McCaffrey et 

al. [24] used the HIT system data to study the balance and neurocognitive function of 

participants who sustained a 90 g impact or higher. They found that non-concussed 

football players did not exhibit a decline in balance or cognition after exposure to an 

impact greater than 90 g. Broglio et al. [25-26] used the HIT system with high school 

players to study linear and rotational acceleration, jerk, force, impulse, and impact 

duration categorized by season type, player position, and helmet impact location. They 

were able to capture 13 concussions and proposed a threshold for linear and angular 

acceleration values of 96.1 g and 5582.3 rad/s2 respectively. They also identified the top, 

front, and back locations having the highest probability for concussions. Rowson et al. 

[27-28] studied 76000 head impacts with the HIT system and a 6 Degree of Freedom 

(DOF) rotational acceleration sensor system to reproduce impacts with an FE model. 

They used the Cumulative Strain Damage Measure (CSDM) to find a strain threshold of 

0.15. Rowson et al. [29] then studied 300,997 head impacts, including 57 concussions, 

with the HIT system and the 6 DOF rotational acceleration system to develop a 

concussion risk function for rotational head kinematics. They break down their results by 

injury risk from 10% to 90% and report values for rotational acceleration ranging from 

5260 to 7483 rad/s2 and rotational velocity ranging from 23.3 to 33.2 rad/s. To further 

substantiate the debate on a concussive risk tolerance curve, Duhaime et al. [30] used the 

HIT system to study 486,594 head impacts, including 48 concussions, but reported a 

spectrum of concussion-causing linear and rotational acceleration values ranging from 
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16.5 to 177.9 g and 183 to 7589 rad/s2, respectively. This new data revealed the 

uncertainty associated with any universal predictive concussive threshold. Crisco et al. 

[31] found that player position and helmet impact location had a large influence on 

concussion. They determined the top of the helmet resulted in the largest peak linear 

accelerations and the front/back resulted in the largest rotational accelerations. They also 

identified the running back to have the highest linear acceleration, followed by the 

linebacker, and the defensive back. Finally, to consolidate the concussive risk prediction, 

Rowson and Duma [32] developed a new injury metric, the combined probability of 

concussion, from 63,011 impacts collected by the HITS system. The combined 

probability of concussion metric computes the overall risk of concussion based on both 

the peak linear and rotational accelerations and varies weights on sub-concussive or 

concussive level impacts and unreported or undiagnosed concussions. They find that the 

combined metric is far better at predicting concussion than either the linear or rotational 

metrics alone. While there may not be conclusive evidence leading to a specific injury 

threshold, the data collected by the NFL and the HIT system are still useful for helmet 

design. One of the largest studies reported in literature [33] uses the Head Impact 

Telemetry (HIT) system to collect data from 8 collegiate teams from 2005 to 2010, 

including 1833 players and a combined total of 1,281,444 head impacts. Through the 

course of the study, they track concussions for two Riddell helmets, the VSR4 and the 

next generation Revolution. They find that the helmet design update from the VSR4 to 

the Revolution resulted in 53.9% less concussions. While this observation is limited to 

only two helmet models, the simple fact that a helmet update can reduce the risk of 

concussion gives the current efforts to design a safer football helmet a positive outlook.   
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When concussions first became a major concern for football back in 1994, the 

NFL’s MTBI committee regarded them simply as an “occupational risk.” It was not until 

2002, when Dr. Bennet Omalu made the discovery of CTE in Mike Webster’s brain [34] 

and then linking it to repeat MTBI sustained during his football career that the NFL’s 

MTBI committee began taking the link between football and brain injury seriously. Dr. 

Omalu continued to link CTE to football with multiple confirmed CTE diagnosis in 

deceased football players. In 2010, the NFL began funding Dr. Ann McKee’s team at 

Boston University to research factors that contribute to CTE. Dr. McKee’s group’s 

primary contributions include linking CTE to sub-concussive impacts [35], and a study 

[36] that found CTE in 177 of the 202 brains of football players.  

The Boston University Research CTE Center [37] defines CTE as a “progressive 

degenerative disease of the brain found in people with a history of repetitive brain 

trauma, including symptomatic concussions as well as asymptomatic subconcussive hits 

to the head that do not cause symptoms.” From what we know today, CTE is the result of 

a buildup of an abnormal protein called tau that is responsible for brain degeneration. 

Common symptoms of CTE may include memory loss, aggression, depression, dementia, 

and others that all may become develop after repetitive concussions or a long while later. 

As it stands, the only way to diagnose CTE is through brain dissection postmortem, but 

McKee et al. [38] found it develops in the four stages, shown in Figure 1.2 below. 
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I.  II.  III.  IV.  

Figure 1.2 The four stages of CTE [38]. I-Tau protein is identified in the cerebral cortex 

as small brown spots. II-The progression of the tau as it spreads to adjacent 

cortices. III-Widespread CTE to the frontal, insular, temporal and parietal 

cortices. IV-Severe tau protein affecting most of the cerebral cortex and 

medial temporal lobe. 

Mounting concerns over MTBI and CTE met a climax in 2011 when 4,500 former 

athletes sued the NFL for $765 million to settle damages for over 18,000 athletes caused 

by the league’s misinformation, research, and denial [39].  In the lawsuit aftermath, the 

NFL began to turn things around by launching the “Play Smart. Play Safe” initiative 

through their startup nonprofit organization, Football Research, Inc. The “Play Smart. 

Play Safe” initiative is focused on four primary areas: protecting players, advancing 

helmet technology, funding medical research, and sharing progress. Some of their 

primary contributions to-date include implementing rule changes, establishing concussion 

protocols, funding neuroscience/concussion research, hosting youth concussion 

awareness programs, and funding towards helmet technology innovations. Their 

engineering roadmap provides funding for a series of Head Health Tech Challenges 

(HHTC) that support research and development directly related to improving player 

protective equipment [40]. The focus of this thesis is on the prototype helmet developed 

in conjunction with Yobel Technologies LLC. for submission to the HHTC program. In 

the next section, we give an overview of the components that make up our prototype 

football helmet. 



www.manaraa.com

 

13 

1.3 Football Helmet Technology to Protect the Brain 

The prototype helmet system comprises six components including a titanium 

faceguard, a rubber gasket, a polypropylene (PP) with short E-glass fiber composite outer 

shell, a 3D printed nylon inner shell with bio-inspired sutures, 3D printed nylon stress-

wave dampers, and a foam liner. We display the prototype helmet below in Figure 1.3 

  

Figure 1.3 Our prototype football helmet showing the exploded view (left) and front 

view (right). 

We believe a football helmet should have three key functionalities, to dissipate 

impact energy, trap momentum, and mitigate stress waves. Our goal is to design each 

component shown in Figure 1.3 above to work together to achieve these key 

functionalities. Johnson et al. [41] at Mississippi State University (MSU) came up with 

the design our first prototype faceguard. They took inspiration from big-horn sheep 

impact research and hypothesized that the topology of the faceguard could be optimized 

to reduce tensile pressure and shear strain in the brain. They created a finite element 

analysis (FEA) of a NOCSAE standard linear impactor test that strikes the faceguard at 6 

m/s in two common locations “A and A’” determined by [18-19, 42-43]. They modeled 
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the facemask as titanium (Ti-6Al-4V) with elastic properties and set a hard design 

constraint against plastic deformation. They used a full-scale human head mesh created 

from Computed Tomography (CT) scans that comprises skin, cortical bone, cancellous 

bone, cerebral spinal fluid (CSF) and brain. They modeled the brain behavior with the 

MSU TP 1.1 an Internal State Variable (ISV) [44-45] and then validated it with human 

cadaver experiments [46]. They created a surrogate model from ten Design of 

Experiments (DOE) points to replace the computationally expensive full-scale FEA. 

Finally, they found optimal designs using a Nondominated Sorting Genetic Algorithm 

(NSGA-II) [47] with constraints on solid fraction and bar geometry. The optimal design 

was able to reduce tensile pressure in the brain by 7.5% and maximum shear strain by 

39.5%. We recreated the optimal faceguard geometry in SolidWorks (Dassault Systems, 

Waltham, MA) and verified the dimensions with Johnson’s original CT scan. We show 

the faceguard SolidWorks model and cast geometry below in Figure 1.4. 

  

Figure 1.4 Johnson et al. [41] optimized faceguard SolidWorks model (left) and 

titanium cast (right). 
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We modeled the faceguard grid curvature to match that of a standard football 

helmet faceguard. We positioned the vertical bars according to Johnson’s [41] results. We 

then cast the design out of titanium (Ti-6Al-4V) and pressure treated it with Hot Isostatic 

Pressing (HIP) to reduce the porosity. Finally, we created CT scans of the cast faceguard 

to verify the microstructure after casting and treatment was acceptable. We designed the 

faceguard to mount flush with the composite shell to reduce the risk of another helmet 

grabbing any external hardware resulting in harmful torque on the neck. However, we 

place a soft rubber (Sorbothane) gasket between the faceguard and the shell to ensure a 

secure fit. 

We selected two foam liner options for consideration. Rush et al. [48] optimized 

our primary foam liner design from a series of physical experiments with a standard 

NOCSAE twin-wire drop tower system. They selected slow recovery, open-cell 

viscoelastic polyurethane foam as the base foam material for optimization because of its 

excellent energy dissipation properties. Open-cell slow-recovery foams are similar to 

closed-cell foams, but allow for deformation. The cell walls have small holes that allow 

air to escape and return. This process is referred to as viscous dissipation and is the 

primary energy dissipation mechanism. The features that affect viscous dissipation 

include cell size, cell orientation, number of holes, and hole spacing on a cell wall. Under 

mechanical compression, the stress-strain behavior of an open-cell foam can be broken 

up into the three regions as shown below in Figure 1.5. 
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Figure 1.5 Three regions of compressive stress-strain behavior of open cell foams. 

In Region I, the material behaves linear elastically, that is up until about 5% 

compression. A plateau (Region II) follows the linear elastic region where the material 

absorbs energy at a constant stress until about 60% compression. It is during the plateau 

region (0.05 ≤ ε ≤ 0.6), viscous dissipation occurs and most of the air within the cell 

structure escapes to the environment. Rapid densification (Region III) occurs from 60% 

compression up to about 80% compression when the empty cells collapse on each other. 

Rush et al. [48] conducted a series of compression tests with various foam 

densities (87.0, 79.9, 82.8, 84.3, 85.6 kg/m3) at lower strain rates (0.001, 0.01, and 0.1/s) 

and at high strain rates (600 and 1200/s). They found that the stress levels of the linear 

elastic, plateau, and densification regions all rise while the densification strain lowers 

with increasing strain rates. They also claim that increasing the foam density can achieve 

the same results. 
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They constructed a foam liner for a football helmet using the baseline foam and 

conducted a series of tests with the NOCSAE twin-wire drop tower system to learn how 

the foam enhances helmet performance. They found that the liner distributes the impact 

forces across the entire surface of the head that reduces localized stresses, the plateau-

stress determines how much acceleration is transmitted to the brain, and the key to 

minimizing acceleration and average impulsive forces is to allow the foam to compress 

up to the rapid densification region. They identify that an optimal foam for helmet 

applications can be determined using peak acceleration (G’s), rebound velocity, 

maximum strain, and strain energy as optimization metrics. Keeping these metrics in 

mind, they went on to find an optimal foam liner design using the NOCSAE twin-wire 

drop tower and a set of 12 experiments from an L12 Taguchi Array DOE. Each foam 

liner alternative was an array of cylindrical pods wrapped in Thermoplastic Polyurethane 

(TPU). In their experimental investigations, they considered gas, foam density, layers of 

density, dampers, foam length, Area Ratio (AR), pod diameter, impact location, and TPU 

thickness as design parameters. Where the gas is the medium inside each foam cell, the 

densities used were SunMate (Dynamic Systems Inc.) brand Medium (79.9 kg/m3), Firm 

(84.3 kg/m3), and Extra-Firm (85.6 kg/m3), and AR refers to the ratio of foam to head 

surface area (from 0.5 to 1.0). They discovered foam pod length was the most important 

parameter followed by AR, foam density, and TPU wrap thickness. The optimal foam 

pod liner design consists entirely of 50.8 mm (1.5 inches) long cylindrical Firm foam 

pods (84.5 kg/m3) with a TPU wrap thickness of 0.635 mm (25 mil) and an Area Ratio of 

0.75. They tested their optimal foam liner design and compared the SI, HIC, and Peak-G 
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results with several commercially available football helmets to find their optimal liner 

significantly lowered all three results. 

We used the same brand of SunMate (Dynamic Systems Inc.) polyurethane open-

cell viscoelastic foam with our second prototype, but functionally graded the densities 

from Medium (79.9 kg/m3) to Extra-Firm (85.6 kg/m3) in layers through the cross 

section. Our hypothesis was if lower foam densities are more suitable for lower stress 

levels, and higher foam densities are more suitable for higher stress levels, then 

functionally grading layers of different densities will result in a liner that can dissipate 

energy at a range of impact levels. We show the Rush et al. [49] optimal foam pod liner 

and the prototype functionally graded foam liner cross section in Figure 1.6 below. 

 
 

Figure 1.6 Rush et al. [48] optimized foam pod liner (left) and the prototype 

functionally graded foam liner (right). The functionally graded liner 

consists of four densities: Medium (79.9 kg/m3), Firm (84.3 kg/m3), 

Extra-Firm (85.6 kg/m3), and Soft (87.0 kg/m3) shown as blue, yellow, 

red and light green, respectively. 

From preliminary 2D finite element calculations, we determined the best 

functionally graded foam liner design consists of five layers linearly graded in density 

foam from Medium (79.9 kg/m3) as the outer layer, to Firm (84.3 kg/m3), and then to 

Extra-Firm (85.6 kg/m3) in the middle, then back down to Medium. Our prototype design 
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also includes a sixth layer of 12.7 mm (1/2 inch) thick Soft foam (87.0 kg/m3) to provide 

a good fit to a player’s head. In Figure 1.6 above, the Medium, Firm, Extra-Firm, and 

Soft layers are represented by the blue, yellow, red, and light green colors, respectively. 

We made the prototype functionally graded foam liner design to cover as much of the 

player’s head as possible to protect against impact from any direction. We partition the 

liner into various regions with relief cuts to make manufacturing possible. We also 

provide spaces for ventilation and stress wave damper placement.  

The composite outer shell, the bio-inspired inner shell, and the stress-wave 

dampers are all conceptual components. We selected a polypropylene with short E-glass 

(PP+E-glass) fiber injection-moldable composite made by RTP Company (Winona, MN) 

as the outer shell material. The available RTP Co. brand PP+E-glass fiber composites 

range in fiber density from 10% to 50%. Table 1.1 below shows the range of material 

properties available compared to a baseline polypropylene shell material. 

Table 1.1 RTP Co. brand polypropylene with E-glass (PP+E-glass) fiber density, 

tensile strength, and tensile modulus for 10% to 50% glass fiber additive. 

 Density 

(kg/m3) 

Tensile Strength 

(MPa) 

Tensile Modulus 

(MPa) 

Polypropylene 910 32 1724 

10% E-glass fiber 970 46 3103 

15% E-glass fiber 1000 54 3448 

20% E-glass fiber 1030 60 4482 

30% E-glass fiber 1120 76 6206 

40% E-glass fiber 1210 90 8964 

50% E-glass fiber 1330 97 11722 
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 We selected the 30% E-glass option for testing as a compromise between stiffness 

and weight. We want the shell to be as still as possible to minimize the impact duration, 

which would effectively lower the net impulse. The inner-shell and stress wave dampers 

are both bio-inspired designs. The prototype inner-shell with sutures was 3D printed out 

of nylon. To reproduce the sutures, we first split the inner-shell into 8 regions, similar to 

the way a skull is broken up. We propagated a sine wave with varying amplitudes along 

the region boundaries and randomly selected amplitude peaks to create a mock suture. 

We believe the inner-shell will provide additional rigidity and the sutures may function to 

mitigate stress waves at their juncture. The stress wave dampers are also bio-inspired 

designs. Trim et al. [49] and Johnson et al. [50] noticed the high toughness and energy 

absorbent nature of bighorn sheep horns and their ability to protect the brain from injury. 

They hypothesized the taper and spiral geometry played a key role in mitigating the stress 

waves. They went on to perform a set of finite element simulations with four geometries 

to study the geometric effects on stress wave propagation [51]. They found that a tapered 

spiral geometry was able to reduce an impulse (measured as the integral of the pressure 

history multiplied by the cross-sectional area over the simulation duration) by an average 

of 98.3% regardless of the loading type or material studied. We see tapered spiral 

geometries in other animals such as the woodpecker who undergo high cycles of high 

energy head impacts with seemingly no damage to the brain. Lee et al. [52] studied the 

effect of the hyoid bone’s curvature, taper, and bifurcations had on the stress wave 

propagation. They reached a similar conclusion and found that the hyoid bone curvature 

and taper, along with the surrounding muscle, was able to decrease pressure by 75% and 

dissipate 84% of the impulse.  In response to these findings, we created a prototype stress 



www.manaraa.com

 

21 

wave damper with a curved and tapered geometry to adhere directly to the inner-shell. 

We show the bio-inspired inner shell and stress wave dampers below in Figure 1.7. 

 

 

Figure 1.7 The bio-inspired prototype inner-shell with sutures (left) and stress wave 

damper (right). 

There was some safety concerns about the damper geometry being curved and 

pointed. Therefore, we designed the structure to curve to a point where the point was 

directed away from the head, close to the base of the shell. We modeled the curvature 

using the golden ratio, which we commonly find in nature. In the next section, we discuss 

our experimental investigations with these prototype components to study their effect on 

each other as well as the overall system performance. 

1.4 Helmet Experimentation With a Twin-Wire Drop Tower 

In this section, we describe the twin-wire drop tower experiments conducted to 

understand the effect various helmet concepts had on each other as well as on the overall 

system response. We performed all drop tests with a NOCSAE standard twin-wire drop 

tower system, a standard 50th percentile adult headform, and a tri-axial accelerometer 

imbedded at the headform center of gravity (CG). We did not create or follow a DOE, but 
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rather the more traditional trial-and-error approach discussed earlier. Essentially, we 

formulated a hypothesis, configured the prototype helmet according to our hypothesis, 

conducted the drop test, made our observations, and then repeated the cycle. We dropped 

each helmet configuration in the top location, at 3ft. and 4 ft. heights, and recorded three 

common injury metrics, namely, the SI, HIC, and Peak-G.  

We conducted tests with 11 different helmet configurations. While the results are 

interesting, only five stood out for discussion. In the first test, we compared a thin shell 

(≈2 mm) vs. a thicker shell (≈3 mm). In the second test, we compared the thin shell by 

itself to a thin shell with the bio-inspired inner shell with sutures. In the third test, we 

added the stress wave dampers to the inner-shell. In the fourth test, we removed the 

inner-shell and compared the performance of the stress-wave dampers directly adhered to 

the thin shell against the thin shell by itself. In the first four tests, we used the 

functionally graded foam liner where in the fifth test we compared the difference between 

the functionally graded foam liner to the optimized Firm foam pod liner. 

In the first test, we found that the thin shell performed better than the thick 

causing the SI, HIC, and Peak-G values to drop by 8.5% on average. In the second test, 

we found that adding the inner-shell with sutures to the thin shell resulted in a loss in 

performance where the SI, HIC, and Peak-G values all rose about 11.6% on average. In 

the third test, adding the ram horns to the inner-shell caused values to rise by another 6%. 

After removing the inner-shell and adhering the stress wave dampers directly to the shell, 

we saw another rise in values by about 4.3% on average. Finally, when we compared the 

difference in the functionally graded liner to the Firm foam pod liner, we saw a drastic 

improvement in performance where the SI and HIC values dropped by approximately 
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30% and the Peak-G values dropped almost 12% on average. From our initial hypothesis, 

we expected the addition of the bio-inspired prototypes to improve performance, and the 

functionally graded liner to provide better protection than the Firm foam pod liner. The 

results from each of these studies showed the highly unpredictable nature of systems 

design. To understand the helmet system we would need to conduct more tests, however, 

due to time and financial restrictions we were limited to the number of design iterations 

we could perform. In the next section, we discuss how these observations led to the 

selection of the goal-oriented, inverse decision-based design method. 

1.5 Selecting a Method for Helmet Design 

In the previous section, we briefly described some of our experimental 

investigations with our prototype helmet system. We observed that the traditional design, 

build, test design cycle for multi-component product design is somewhat unpredictable, 

time consuming, and expensive. Simply combining optimal or ideal components together 

in the same system did not result in a predictable, or ideal system. Moreover, we would 

need many more design iterations to isolate an individual component’s effects on the 

other components, or on the overall system. In addition, there is uncertainty in various 

forms and sources at every stage of the design, manufacturing, and testing process. 

Therefore, in order to design the assorted components of a football helmet together as a 

system we shift our paradigm from the traditional trial-and-error design paradigm to a 

new paradigm for decision-based system design.  

In our new paradigm, we need to select a design method that supports simulation-

based design, allows us to establish system-level performance targets and then design 

multiple sub-system components with respect to each other and the overall system-level 
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performance targets. The ideal design method should also support decision-making under 

the unpredictable uncertainty in the environment (aleatory), the predictable uncertainty in 

the design variables (epistemic), and the uncertainty associated with the modeling and 

analysis. The preferred design method must also be modular to allow for rapid sub-

system component changes and design cycle iterations. Finally, we desire the method to 

be generic to allow us to design helmets for other sports in the future, such as hockey, 

lacrosse, or baseball.  

We select the goal-oriented, inverse decision-based design method developed by 

the Systems Realization Laboratory @ the University of Oklahoma (SRL@OU) to design 

our helmet system. According to their decision-based design paradigm, systems design is 

the top-down driven, simulation-supported, inverse, decision-based design exploration of 

sub-system components that share the same set of system-level goals [53]. In decision-

based design, the fundamental role of a human designer is to make decisions given that 

true optimality may be impossible because all models embody various forms of 

uncertainty [54]. Nellippallil et al. [55] originally demonstrated the efficacy of the goal-

oriented, inverse decision-based design method for multiscale material and process chain 

design. In this thesis, we adopt their method and demonstrate its applicability to product 

design by designing two components of our conceptual helmet system. In Chapter 2, we 

discuss the details of the selected method and demonstrate its application to helmet 

design. In Chapter 3, we discuss our limitations and future work. 
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CHAPTER II 

DEMONSTRATION OF THE GOAL-ORIENTED, INVERSE DECISION-BASED 

DESIGN METHOD FOR DESIGNING FOOTBALL HELMETS 

2.1 A Goal-Oriented, Inverse Decision-Based Design Method Overview 

In the previous chapter, we discussed our earlier attempts to design a prototype 

football helmet, comprised of six components ranging from conceptual to optimal, with a 

more traditional trial-and-error method. To recap, we list some of the challenges 

associated with multi-component systems design are listed below: 

• System-level performance goals are seemingly unpredictable or unobtainable due 

to the complex interactions of multiple conceptual components within the same 

system boundary. 

• Uncertainty is accumulated in three distinct ways: from the approximations in the 

math, material or analysis models used in the design phase, manufacturing quality 

control, and data collection or engineering errors in the experimental phase.   

• Multiple iterations of the design, manufacturing, and experimentation phases 

required to gather enough information about the system to make good design 

decisions is highly time consuming. 

• Analysis programs, computational resources, manufacturing and acquisition of 

materials, and test equipment can all be very expensive. 
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We view a football helmet simply as a “multi-component system” where at least two 

or more components, each with unique objectives, constraints, and variables, operate 

together within the same system boundary. To address the systems design challenges to 

design a football helmet, we require a design method that supports the following features: 

• Supports decision-making in the presence of uncertainty 

• Allows a designer to identify and manage complexity to account for the 

emergent properties that cannot be predicted 

• Supports solution space exploration to find a compromise between satisficing 

solutions and costly iterations 

• Supports simulation-based design 

• Allows a designer to target system-level performance goals and then design 

multiple components with respect to those goals 

• A modular and generic method to allow us to reformulate the problem at will 

and then substitute components to design for other helmets in the same 

product family. 

To meet these requirements and find satisficing solutions for our helmet, we select the 

goal-oriented, inverse decision-based design method developed by Nellippallil et al. [56] 

for material and process design and adapt it for product design. The method is goal-

oriented because we first select system-level performance requirements. This aspect of 

our method is inspired by Gero [57], who describes the Analysis, Synthesis, and 

Evaluation (ASE) design method as a series of information transformation beginning 

with an establishment of design requirements and ending with design specifications that 

satisfy the requirements. Gero’s method [57] has five key aspects: functions, structures, 
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expected behavior, achieved behavior, and product descriptions. He defines a function as 

the relation between the design goal and the resultant behavior. A function can be 

formulated in terms of material, energy and signal (information). Structure represents the 

product subassemblies and their relationships identified during the analysis and synthesis 

phases. Structure contains information about the product geometry, materials, 

configurations, etc. The expected behavior represents the ideal, satisfactory product 

behavior and the achieved behavior is actual result. Finally, product descriptions are the 

structure specifications. Gero’s method [57] for product design begins with establishing 

the system-level performance requirements. With respect to helmet design, these 

performance-requirements may include energy absorption or system weight 

requirements. In the analysis phase, functions are developed that describe the design 

requirements or goals to the product behavior in material, energy, or information terms. 

Then, product structure, expected behavior, and actual behavior can be generated through 

iterative synthesis and evaluation. Finally, product descriptions are found after the actual 

behavior satisfy the defined system-level performance requirements. The way Gero’s 

method encompasses the ASE paradigm and maps product requirements to achieved 

behavior to find product description is useful in the development of our goal-oriented, 

inverse design method for designing helmets. 

Our method is inverse because we design the individual components in an inverse 

manner with respect to the goals considering an initial forward mapping from a set of 

design requirements to design descriptions. The idea of forward mapping comes from 

Suh’s Axiomatic Design Process [58]. Essentially, there are four key mapping sequences 

between four key domains to bridge “what we want to achieve” and “how we want to 
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achieve it.” In the Customer Domain, Customer Attributes (CA) are the customer needs. 

In the Functional Domain, Functional Requirements (FR) are “what we want to achieve”. 

In the Physical Domain, we identify Design Parameters (DP) that satisfy the FRs. Finally, 

in the Process Domain, we find Process Variables (PV) from the DPs. Suh’s Axiomatic 

Design process requires effective mapping from the CAs, to the FRs, to the DPs, and 

finally to the PVs. There are two key axioms to Suh’s design process: 

• The “Independence Axiom” – where Design Parameters are mapped to the 

appropriate Functional Requirements such that modifying one Design 

Parameter will not affect other Functional Requirements. 

• The “Information Axiom” – where any independent axiom has minimum 

information content. 

According to Suh’s Axioms, a good design is one that satisfies both Axioms. Regardless, 

the mapping between domains to achieve product requirements is useful for developing a 

method for decision-based design.  

 We support decision-making under uncertainty by incorporating aspects from 

Mistree et al. [59-61] Decision-Based Design (DBD) paradigm. According to their 

paradigm, the principal role of a human designer is to make decisions based on the 

information (decision support) provided by the computer. The designer should focus on 

managing uncertainty, not mitigating it. Therefore, it is important for the designer to 

identify multiple solutions that are relatively insensitive to uncertainty. The designer will 

then need to explore the solutions and pick (using human judgement) the best alternative 

and move forward. They define designing as a conversion of information from needs and 

requirements of the product into knowledge of the product. A designer should start with 
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the desired functional requirements and then be able to work backwards to find 

satisfactory design solutions. Mistree et al. [59] base their work on Simon and Miller [62] 

who suggest design is decision-based and an artificial science. Their set of DBD beliefs, 

hypothesis, and knowledge on the work of Miller [63]. They believe design decisions are 

multileveled and multidimensional in nature. They involve information that comes from 

different sources and disciplines and may not be complete or available. Some information 

is “hard”, or based on scientific principals while some information is “soft”, or based on 

the designer’s judgement/expertise. The lack of information accuracy or completeness 

leads a designer to make a satisficing decision, or one that is sufficient but less than 

optimal. One instantiation of DBD is the Decision Support Problem Technique (DSP 

Technique). The DSP Technique proposed by Muster and Mistree [64] supports a 

designer in partitioning and formulating design problems in simple terms to assist in 

finding satisficing solutions. The DSP Technique is implemented in two phases: the 

meta-design and design phases. In the meta-design phase, the designer is “designing the 

design phase” and consists of planning and structuring decision support problems. In the 

actual design phase, the designer finds solutions to the decision support problems and 

then further verifies or validates the results. We adopt the DSP Technique in this work to 

embody the goal-oriented, and inverse features of our method. We show the generic form 

of our goal-oriented, inverse decision-based design method for systems design below in 

Figure 2.1. 
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Figure 2.1 The four steps to the generic goal-oriented, inverse decision-based 

design method for systems design. 

 At a minimum, the generic form of our method shown in Figure 2.1 requires four 

essential steps. In Step 1, shown by the blue dashed line, the designer establishes the 

forward modeling and information flow. Design information is passed into the system 

and specific requirements are set for the system output. For product design, each 

conceptual component subject to design is listed in the order information flows from the 

system input to the system output. The solid green arrow represents “hard” information, 

and the green dashed arrow represents “soft” information. Information must be mapped 

in a consistent way, such as matter or energy, from component to component to establish 

the bottom-up, cause and effect relationships that connect the components to the overall 

system-level performance requirements. Then, we can establish system-level targets that 

we use to drive the design of the individual components in an inverse fashion, beginning 

with the last component in the system.  
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 In Step 2, the designer performs the design analysis to generate a set of 

satisficing solutions for the final component with respect to the system-level goals. In this 

step, soft information from the preceding components, design variables and ranges for the 

current component, and expected behavior at the system level (goals) are used to 

formulate the design problem. Information about the needs and requirements of the 

component is converted into knowledge about the component. In Step 3, we pass the new 

hard information back to design the preceding component. In Figure 2.1, this could be the 

middle component, or the first component, depending on the number of components 

subject to design. For each analysis following Step 2, the design requirements are 

updated so that each set of satisficing solutions will result in a system that at least 

maintains, if not improves, the system performance. In Step 4, the designer verifies the 

cDSP results. In product design, this verification may be carried out with FEA, 

experimentation, or by some other form. Finally, the designer may choose to move on to 

the embodiment an detailed design phases, or reformulate and repeat the process until a 

satisfactory system design is achieved. 

To systematically collect and manage the information used in Steps 2, 3, etc. we 

use the Concept Exploration Framework (CEF) construct. We use the compromise 

Decision Support Problem (cDSP) to find satisficing solutions for our design goals. And 

to explore the solution space and select a design alternative, we use ternary plots. We 

discuss the cDSP construct in detail in Section 2.1.1, the CEF construct in Section 2.1.2, 

and the solution space exploration with ternary plots in Section 2.1.3. 
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2.1.1 The compromise Decision Support Problem (cDSP) 

The cDSP is the foundational mathematical construct used in the analysis steps of 

our method to find satisficing solutions for each design variable with respect to the 

conflicting set of system-level goals. McDowell et al. [54] point out that systems design 

with incomplete and inaccurate models results in different types of uncertainties 

associated with a system, the design parameters, the math or analysis models, and the 

uncertainty in their interactions. Therefore, Bras et al. [65] and Mistree et al. [66] 

formulate the cDSP to find satisficing solutions for the conflicting goals that are 

insensitive (or robust) to the various forms of uncertainty. The solution space of 

satisficing solutions can then be explored to make a selection based of the designer’s 

intuition or expertise. The cDSP is a hybrid of mathematical programming and goal 

programming, where the priority is to achieve a target set for each goal as close as 

possible. We show the generic form of the cDSP below in Figure 2.2. 
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Figure 2.2 The generic form of the compromise Decision Support Problem [67]. 

The cDSP has four key sections: given, find, satisfy, and minimize. In the “given” 

section, the designer lists all the relevant information available about the component. This 

may include information regarding the system variables, constraints, goals, and targets. In 

the “find” section, the designer identifies the information about the system variables and 
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deviation variables to find. The deviation variables 𝑑𝑖
− and 𝑑𝑖

+ represent the 

underachievement and overachievement from the selected targets 𝐺𝑖. In the “satisfy” 

section, the designer explicitly lists system constraints, variable bounds, and system 

goals. Finally, in the “minimize” section, the designer executes the cDSP to minimize the 

deviation function objective function shown below, 

𝑍 =  ∑ 𝑊𝑖(𝑑𝑖
− + 𝑑𝑖

+); ∑ 𝑊𝑖 = 1𝑚
𝑖=1

𝑚
𝑖=1   (2.1) 

where the weights 𝑊𝑖 represent the desire to achieve a particular goal. A separate 

deviation function is written to minimize for each system level goal. The designer 

exercises the cDSP to generate a set of satisficing design variable solutions according to a 

weight sensitivity analysis that will be discussed in detail later.  

2.1.2 The Concept Exploration Framework (CEF) 

The second core construct to our goal-oriented, inverse decision-based design 

method is the Concept Exploration Framework (CEF) proposed by Nellippallil et al. [55]. 

In our method, we use the CEF in each step to systematically collect the information 

needed complete and exercise the cDSP. The CEF is derived from the Robust Concept 

Exploration Framework (RCEF) developed by Chen et al. [68]. The generic form of the 

CEF is shown below in Figure 2.3. 
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Figure 2.3 The generic Concept Exploration Framework (CEF) for collecting and 

managing design information. 

 The generic CEF shown in Figure 2.3 above includes eight processors (A, B1, B2, 

D, E, F, G, H) and simulation programs (C). At the heart of the framework is the cDSP 

computational framework described in Section 2.1.1. Essentially, the framework is useful 

for collecting and managing the necessary design information to then generate a set of 

satisficing solutions and make decisions under the assumption that the information is not 

complete or completely accurate. To start, the selected design goals and targets defined 

during the problem formulation (see Figure 2.1, Step 1) can either come from the “end”, 

at the system-level, or from the top down in the form of adjusted goals and targets. 

Design goals and targets information, along with the information collected through 

Processors A, B1, B2, C, D, and E are passed directly into the cDSP. In Processor A, the 

designer identifies the design factors (variables) and establishes the ranges (lower and 
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upper bounds). If there are theoretical or empirical models available to describe the 

design variables in terms of the system level goals, then the information is passed from 

Processor B1 into the cDSP. If no theoretical or empirical models are available, then the 

designer must iterate through processors B2, C, and D to gather data from a DOE in 

Processor B2, a simulation or analysis program in Processor C, and refinement in 

Processor D. The information collected from Processors B2, C, and D is passed on to 

Processor E to create a surrogate model. The surrogate models are passed directly into the 

cDSP and the preliminary information collection process is complete. The designer can 

exercise the cDSP (Processor F) to find satisficing solutions for the design variables with 

the weight sensitivity analysis in Processor G, and then explore the solution space in 

Processor G. In this thesis, we use ternary plots to explore the solution space and find 

satisficing solutions. 

2.1.3 Solution Space Exploration with Ternary Plots  

The weight sensitivity analysis and solution space exploration Processors G and 

H, respectively, is carried out with ternary plots. In this thesis, we only define three goals 

for our system. Therefore, in Processor G, we need to vary weights on the three goals, 

which are plugged directly into the three minimization functions in the cDSP. We show 

the weighting scenarios for a three-goal problem in Table 2.1 below. 
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Table 2.1 Concept Exploration Framework Processor G weight scenarios for a three-

goal problem formulation. 

Scenarios W1 W2 W3 

1 1 0 0 

2 0 1 0 

3 0 0 1 

4 0.5 0.5 0 

5 0.5 0 0.5 

6 0 0.5 0.5 

7 0.25 0.75 0 

8 0.25 0 0.75 

9 0.75 0 0.25 

10 0.75 0.25 0 

11 0 0.75 0.25 

12 0 0.25 0.75 

13 0.33 0.34 0.33 

14 0.2 0.2 0.6 

15 0.4 0.2 0.4 

16 0.2 0.4 0.4 

17 0.6 0.2 0.2 

18 0.4 0.4 0.2 

19 0.2 0.6 0.2 

The weights range from 0 to 1 where a value of 1 represents the highest 

preference, and a value of 0 represents no preference. Scenarios 1-3 represent a 

maximum weight assignment to find design solutions that satisfy the design requirements 

and achieves a goal as close as possible with no preference on the other goals. Scenarios 

4-6 split the preference between two goals equally, while giving no preference to the 

third goal. Scenarios 7-12 give a higher preference to one goal, a low preference to 

another goal, and no preference to the last goal. Scenario 13 represents an equal 

preference split among the three goals. Scenarios 14-19 distribute the preference among 

the three goals in different amounts. Exercising the cDSP for all 19 weight assignments 

gives the minimum number of design alternatives needed to span the ternary design space 

shown in Figure 2.4 below. 
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Figure 2.4 A blank ternary plot (left) with the distribution of 19 design points and a 

colored ternary plot (right) used to visualize the 19 normalized solution 

values for the three design goals. 

On a ternary plot, the three axes represent our three design goals, where the axis 

range from 0 to 1 represents the normalized maximum and minimum goal values, 

respectively. In the blank ternary plot, shown on the left in Figure 2.4 above, the green 

points are the 19 design points from the weight sensitivity analysis. Wang et al. [69] 

propose a systematic method for exploring the ternary plot solution space. To visualize 

the solution space with the colored plot shown on the right in Figure 2.4, we can plug the 

design variables into the goal formulations (theoretical, empirical, or surrogate models) to 

calculate the real goal values. Then, the goal values must be normalized on a scale of 0 to 

1 to be plotted and then compared against the other goals where a dark red color 

represents a maximum value of 1, and dark blue represents a minimum value of 0. All 

design points are technically feasible design points but may not satisfy the designer’s 

preference. Therefore, the designer can now specify a preference boundary that reduces 

the design space to make selection easier. Three colored plots must be generated, one 
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with respect to each goal, and then combined as one plot to reveal the satisficing solution 

space. The designer can now select from the available satisficing solutions or reiterate to 

expand or reduce the number of options. 

2.1.4 Next Steps to Use the Goal-Oriented, Inverse Decision-Based Design for 

Helmet Design 

The goal-oriented, inverse decision-based design method with the cDSP and CEF 

design constructs and ternary plot tool discussed thus far were first demonstrated to 

design materials and the associated manufacturing hot rod rolling processes by 

Nellippallil et al. [55, 67, 70-73]. In this thesis, we adapt their framework for product 

design and lay the foundation for the design of multiple football helmet components. 

First, we demonstrate the design of a simplified helmet liner to verify the applicability of 

the CEF, cDSP, and ternary plots for helmet design. Then, we demonstrate the design of 

two components: the actual helmet liner with respect to the system-level goals, and then 

the composite shell with respect to modified goals to establish the efficacy of our selected 

method for system design. In both examples, we frame the problem to follow a helmet 

strike that transfers energy through the composite shell, into the foam liner, and then into 

the head. From a helmet design perspective, we desire three key functionalities, namely, 

to absorb impact energy, minimize system weight, and mitigate stress waves. From these 

goals, we can define performance targets and set design constraints at the system level. 

At the sub-system level, each individual component has unique objectives, constraints, 

and variables that describe the design variables. A major challenge in our work is in 

establishing a proper flow of information that allows us to design the components with 

respect to each other and the system-level goals. We find that all helmet components play 
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different roles in managing the impact energy and both affect the overall system weight. 

Therefore, setting the performance goals in terms of energy and mass allows us to 

establish a proper forward flow of information. 

In Section 2.2, we detail the design of a simplified version of the foam liner using 

the CEF, cDSP, and ternary plots. Then, in Section 2.3, we detail the design of two 

subassemblies, namely, the helmet composite shell, and the foam liner to demonstrate the 

full functionality of our method.  

2.2 Demonstrating Our Method to Design the Foam Liner Composed of Six 

Cylindrical Foam Pods Wrapped in Thermoplastic Polyurethane 

In this section, we demonstrate our goal-oriented, inverse decision-based design 

method with the cDSP, the CEF, and solution space exploration with ternary plots to 

design a simplified version of the helmet region foam liner and TPU wrap. Our interest in 

this exercise does not lie in the results, rather in establishing confidence in the 

applicability of the constructs and solution space exploration tool for helmet design. 

2.2.1 Problem Definition 

A typical American football helmet comprises six regions (excluding the 

facemask) including the front, side, front boss, rear boss, rear, and top. With respect to 

helmet design, we believe a good helmet should provide protection for the different 

player positions which may need greater levels of protection in some regions, and not in 

others. For example, a lineman may need more protection at the front of the helmet, 

where a wide receiver may need protection at the top, side, or rear. Therefore, the overall 

goal is to design the different regions of the helmet with our inverse method, but in this 

section, we focus only on the top region. To make our analysis simple, we use a flat 
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representation of the top region that has approximately the same surface area as the real 

helmet region. We show a diagram of our helmet section and simplified geometry in 

Figure 2.5 below. 

 

Figure 2.5 Example top region and simplified region featuring a flat shell and 6 

cylindrical foam pods wrapped in thermoplastic polyurethane. 

The simplified, flat region shown in Figure 2.5 above was inspired by the 

experimental design work of Rush et al. [48]. In their work, which we discussed in 

Section 1.3, the optimal foam liner design consist of SunMate (Dynamic Systems Inc.) 

Firm Foam (84.3 kg/m3) cylindrical pods, wrapped in a thermoplastic polyurethane 

(TPU) film, and covering approximately 75% (AR = 0.75) of the head. We compared 

different flat section geometries but found a hexagon shape was the only base shape that 

allowed equal pod spacing and 75% coverage. We position 6 TPU wrapped foam 

cylinders in a circular array with no preference to the cylinder diameter. In this analysis, 
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we left a space in the center of the array to incorporate a stress wave damper in future 

work. The hexagon base shell had a surface area of 18763.47 mm2 and each of the 6 foam 

cylinder had a fixed cross-sectional diameter of 53.88 mm making the combined surface 

area of the foam 13680.32 mm2. The ratio of the foam cylinder surface area to the base 

hexagon shell surface area was 0.73, which is within 3% of our target AR of 0.75. In the 

design analysis, we only considered two design variables, namely, the foam pod depth 

and the TPU wrap thickness. We show both design variables and their ranges in Table 2.2 

below. 

Table 2.2 Foam liner design variables and ranges for the simplified liner design. 

 Minimum Maximum 

Pod Depth (D) (mm) 25.4 50.8 

TPU Thickness (t) (mm) 0.1 1.30 

 We strike the top of the foam with a 5 kg mass and 5.46 m/s velocity, which 

correspond to the NOCSAE standard headform mass and the final velocity from a 5 ft. 

standard NOCSAE twin-wire drop tower test, respectively. We set three goals for our 

liner component, namely, to maximize energy dissipation (Goal 1), minimize component 

weight (Goal 2), and maximize the pod depth (Goal 3). Goal 1 is measured with internal 

energy (J), and our target of 100% dissipation would be achieved if the system 

completely traded the impact kinetic energy for internal energy. Therefore, our target for 

internal energy is equivalent to the input kinetic energy, or 74.53 J. However, we realize 

this target may be impossible to achieve and we expect the actual internal energy result 

will be less than the target. We set a lower bound for internal energy at 37.26 J, based off 

our intuition, to constrain the system to at least 50% dissipation. The combined weight of 

the foam cylinder and TPU wrap makes up Goal 2. We set the Goal 2 weight target as the 
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minimum possible weight from the combination of design variables (See Table 2.2). For 

an array of 6 pods, the weight target for Goal 2 is 0.034 kg with a maximum constraint of 

0.2 kg. that corresponds to the combination of maximum design variables. We measure 

Goal 3 pod depth as the normal distance from the shell to the base of the foam pod. 

Typical football helmet liners are approximately 38.1 mm (1.5 in.) deep, however we 

want to explore a range of options because Rush et al. [48] found that pod depth (liner 

depth) had the greatest influence on energy absorption. Therefore, we set the depth target 

at 50.8 mm with a minimum depth greater than 25.4 mm. Our minimum value of 25.4 is 

the minimum depth allowable to protect the head from the hard shell at the onset of foam 

densification. It is important to note that these three design goals are conflicting in nature, 

where a larger pod depth or thicker TPU thickness may help Goals 1 and 3 but hurt Goal 

2. Therefore, we rely on the solution space exploration, enabled by our ternary plot tool, 

to find overlapping satisficing design regions. This is a very simple design problem; 

therefore, we are not interested in the results, but rather in successfully exercising the 

CEF, the cDSP, and ternary plot tools to verify they are appropriate for our future helmet 

design. In the next section, we describe the CEF and cDSP to find satisficing solutions 

for our foam liner and TPU wrapped pods. 

2.2.2 The Concept Exploration Framework and compromise Decision Support 

Problem to Design the Simplified Liner Subsystem 

In this problem, we use the CEF to manage information collection, design 

analysis, and solution space exploration. We show the CEF with the specific input targets 

and processors needed to design the simplified foam liner in Figure 2.6 below. 
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Figure 2.6 The Concept Exploration Framework (CEF) for the simplified foam liner 

subsystem. 

 As we mentioned in Section 2.2.2, the CEF is composed of data collection 

processors: A, B1, B2, D, & E, simulation processor C, and design analysis processors: F, 

G, & H. Targets 1, 2, and 3 are the specific values we wish to attain from our three design 

goals. We pass this information directly into Processor F, the cDSP, and Processor A. In 

processor A, we define the variable ranges for our two design factors, namely, foam pod 

depth (D) and TPU wrap thickness (t). Next, we find or create the math models that 

describe our liner subsystem. Because we simplified the geometry and design variables, 

we can easily calculate the subsystem weights and pod depth with simple analytical 

calculations in processor B1. The analytical model for system weight is shown below. 

𝑊𝑡(𝐷, 𝑡) = 6 ∗ [(𝑚𝑇𝑃𝑈 ∗ 𝑉𝑇𝑃𝑈) + (𝑚𝑓𝑜𝑎𝑚 ∗ 𝑉𝑓𝑜𝑎𝑚)]   (2.2) 
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Where 𝑚𝑇𝑃𝑈 is the mass of the TPU wrap, 𝑚𝑓𝑜𝑎𝑚 is the mass of the foam, 𝑉𝑇𝑃𝑈 

and 𝑉𝑓𝑜𝑎𝑚 represent the volume of the TPU wrap and the foam, respectively. We 

calculate 𝑉𝑇𝑃𝑈 with the equation below. 

𝑉𝑇𝑃𝑈(𝐷) = (𝜋 ∗
𝑑𝑝𝑜𝑑

2
∗ 𝐷) − 𝑉𝑓𝑜𝑎𝑚     (2.3) 

Where 𝑑𝑝𝑜𝑑is the outer diameter of a cylindrical liner pod, and 𝐷 is the pod depth 

design variable. We calculate 𝑉𝑓𝑜𝑎𝑚with the equation below. 

𝑉𝑓𝑜𝑎𝑚(𝐷, 𝑡) = 𝜋 ∗ (
𝑑𝑝𝑜𝑑

2
− 𝑡) ∗ (𝐷 − 2 ∗ 𝑡)    (2.4) 

Where 𝑑𝑝𝑜𝑑is the outer diameter of a cylindrical liner pod, 𝐷 is the pod depth 

design variable, and 𝑡 is the TPU thickness design variable. Next, we need to create a 

metamodel that describes energy dissipation in terms of our two design variables. 

Therefore, we use processors B2 to create a Design of Experiments (DOE), processor C 

and D to run Finite Element Analysis (FEA), and processor E to create a polynomial 

response model from the FEA results. Because we only have two factors and two levels 

(22), we can easily construct and run analysis on a full factorial DOE with 4 runs. We 

show the full factorial DOE for the foam liner subsystem in Table 2.3 below.  

Table 2.3 Four level (22) full factorial Design of Experiments (DOE) for the 

simplified foam liner subsystem Internal Energy. 

Experiment Depth (mm) Thickness (mm) 

1 25.4 0.1 

2 25.4 1.3 

3 50.8 0.1 

4 50.8 1.3 

We construct a quarter-pod Finite Element mesh and strike top with a rigid flat 

plate using the prescribed boundary conditions mentioned earlier. A description of the 
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Finite Element Analysis will be given in the next section. From the FEA results, we 

constructed the polynomial response model for internal energy in terms of our two design 

variables. The polynomial response model is shown by the equation below. 

𝐼𝐸(𝐷, 𝑡) = ((0.0063(𝐷) + 0.3933(𝑡) − 3.8701(𝐷) ∗ (𝑡)) ∗ 10^5)  (2.5) 

Where 𝐷 and 𝑡 are the design variables for pod depth and TPU thickness, 

respectively. The design information collected through CEF processors A-E can now be 

used to formulate the cDSP. As we described in Section 2.1.1, the formal cDSP has for 

key sections: Given, Find, Satisfy, and Minimize. We show the formal cDSP for our 

simplified foam liner subassembly below. 

Given: 

(1) The three performance goals identified for our simplified foam liner 

subassembly 

➢ Maximize internal energy (IE) 

➢ Minimize system weight (Wt) 

➢ Maximize pod depth (D) 

➢ Achieve target energy dissipation (100%) 

➢ Target value for internal energy, IE = 74.53 J 

➢ Target value for system weight, Wt = 0.034 kg 

➢ Target value for pod depth = 50.8 mm 

 

(2) The foam liner polynomial response models 

➢ Internal energy (IE), see Equation # 

➢ TPU Volume, see Equation # 

➢ Foam Volume, see Equation # 

➢ System weight, see Equation # 

➢ Pod Depth 

 

(3) Variability in system variables 

We provide the system variables in the Find and Satisfy sections. 

 

Find: 

System Variables 

X1, foam depth (D) – 25.4 to 50.8 mm 

X2, TPU thickness (t) – 0.1 to 1.3 mm 

 

Satisfy: 
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System Constraints 

➢ Minimum Internal Energy Constraint 

 𝐼𝐸 ≥ 37.3 𝐽 (2.6) 

➢ Maximum Weight Constraint 

 𝑊𝑡 ≤ 0.2 𝑘𝑔 (2.7) 

➢ Minimum Depth Constraint 

 𝐷 ≥ 25.4 𝑚𝑚 (2.8) 

 

System Goals 

Goal 1:  

➢ Maximize Internal Energy 

 
𝐼𝐸(𝑋𝑖)

𝐼𝐸𝑇𝑎𝑟𝑔𝑒𝑡
+ 𝑑1

− − 𝑑1
+ = 1 (2.9) 

Goal 2: 

➢ Minimize System Weight 

 
𝑊𝑡𝑇𝑎𝑟𝑔𝑒𝑡

𝑊𝑡(𝑋𝑖)
− 𝑑2

− + 𝑑2
+ = 1 (2.10) 

Goal 3:  

➢ Maximize Pod Depth 

 
𝐷(𝑋𝑖)

𝐷𝑇𝑎𝑟𝑔𝑒𝑡
− 𝑑3

− + 𝑑3
+ = 1 (2.11) 

Variable Bounds 

X1 – 25.4 to 50.8 mm 

X2 – 0.1 to 1.3 mm 

Bounds on deviation variables 

 𝑑𝑖
−, 𝑑𝑖

+ ≥ 0 and 𝑑𝑖
− ∗ 𝑑𝑖

+ = 0, 𝑖 = 1,2,3 (2.12) 

Minimize: 

We minimize the deviation function. 

 𝑍 =  ∑ 𝑊𝑖(𝑑𝑖
−

3

𝑖=1

+ 𝑑𝑖
+); ∑ 𝑊𝑖

3

𝑖=1

= 1 (2.13) 

 

We formulate the cDSP (shown above) in CEF processor F, and then run it 19 

times according to a weight sensitivity analysis in processor G to obtain 19 design points. 

In the last CEF processor H we plot the design points with a ternary plot and then explore 

the solution space to find satisficing solutions for each of our design goals. Finally, we 

can make our design decisions. In the next section, we review the FEA used to develop 

the internal energy metamodel. 
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2.2.3 Finite Element Analysis 

To develop a metamodel for internal energy, we only needed 4 simulations from a 

2 factor, 2 level (22) DOE. We created each mesh for the DOE and ran the impact 

simulations in Abaqus Explicit. To simplify the computations, we modeled only a quarter 

of one foam pod with TPU wrap and applied symmetric boundary conditions on both 

symmetry faces. We conducted a mesh refinement study for the foam and TPU 

components. To select a mesh for the foam, we conducted two refinements where we 

increased the number of elements in one study, and then increased the order of elements 

in the next study. Both refinement studies had seven iterations where we measured von 

Mises stress at the fixed surface and internal energy. In the first refinement, we uniformly 

increased the number of elements by decreasing the global seed size from 4.5 down to 

1.0. In the second refinement, we increased the order of interpolation from linear to 

quadratic. We found a maximum of 0.88% change in von Mises stress across all seven 

iterations in both refinements. Therefore, we selected the elements with a seed size of 3 

mm and linear interpolation based on CPU time.  

We conducted a similar refinement to determine the appropriate mesh for the 0.1 

mm thick TPU shell elements. However, in addition to increasing the number of elements 

and order of interpolation, we also compared the results from triangular (S3R) shell 

elements. In this refinement study, we tracked changes in artificial energy, internal 

energy, and total energy. We found that shell elements tend to increase the total energy of 

the system due to higher than normal artificial energy that results from hourglassing 

errors. We found we could mitigate the hourglassing errors either with quadratic 

elements, or a larger number of linear elements. We selected linear interpolation, square 
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elements at a seed size of 0.8 based on CPU time. There was no difference in answer 

when comparing the selected mesh to that of a triangular (S3R) mesh. In the two analysis 

with 1.3 mm thick TPU, we used with explicit C3D8R continuum brick elements. We 

ensured the total energy, artificial energy, and internal energy values were consistent with 

the results from the refinement study and selected seed sizes to ensure all aspect ratios 

were below 3. We fixed a rigid flat plat made of R3D4 elements at the base of the pod 

and placed another plate approximately 1 mm above the top of the foam pod. In Table 2.4 

below we show the final mesh details for the quarter symmetry pod. 

Table 2.4 Finite element analysis mesh details for the quarter symmetry pod wrapped 

in thermoplastic polyurethane. 

Component Element Type # of Elements # of Nodes 

Plate R3D4 – rigid, linear, 

quadrilateral 

100 121 

Foam C3D8R – linear brick & reduced 

integration 

1760 – 3840 2208 - 4600 

TPU Shell S4R – 2D shell with reduced 

integration 

3942 – 5616 3942 - 5748 

TPU Solid C3D8R – linear brick & reduced 

integration 

12500 - 17200 16080 - 22080 

We placed a reference point at the center of the upper plate that we used to apply 

a 5 kg mock headform mass and -5.46 m/s impact velocity. We allowed the analysis to 

run long enough for the rigid plate to compress the quarter symmetry pod and then 

completely relax. We use two materials in this analysis, a viscoelastic TPU model for the 

wrap and low density foam model for the foam. We modeled the viscoelastic TPU model 

with Prony series time constants provided by Zhou, et al. [74]. We also used their values 



www.manaraa.com

 

50 

for density, and Poisson’s ratio that were 1070 kg/m3 and 0.485, respectively. We used 

the low-rate (0.1/s) and high-rate (600/s) compression test data collected by Rush et al. 

[48] with the Abaqus low density foam model and a density of 84.3 kg/m3 and Poisson’s 

ratio of 0.1 to model the SunMate (Dynamic Systems Inc.) Firm foam. We show both 

material models below in Figure 2.7. 

 

Figure 2.7 Viscoelastic TPU model (left) and SunMate (Dynamic Systems Inc.) 

Firm foam low density foam model from experimental data (right). 

Through the analysis time history, we see an inverse correlation between kinetic 

energy and internal energy. At the start of the analysis, kinetic energy is at its highest, 

and internal energy is at its lowest and then we see a total tradeoff at the point where the 

pod is fully compressed. Then the pod relaxes and returns to equilibrium where we see 

the kinetic energy value is much lower due to the dissipated energy. We take the value of 

internal energy at equilibrium as the measure of energy dissipated by our pod. We find 

different levels of internal energy for the four different analysis that we use to create our 

metamodel.  
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2.2.4 Solution Space Exploration and Discussion 

In this section, we describe the integrated solution space exploration of the 

simplified foam pods to verify our ternary plot tool.  We exercise the cDSP according the 

CEF Processor G weight sensitivity analysis discussed in Section 2.1.3. The weights 

range from 0 to 1 where a value of 1 represents the highest preference, and a value of 0 

represents no preference. Scenarios 1-3 represent a maximum weight assignment to find 

design solutions that satisfy the design requirements and achieves a goal as close as 

possible with no preference on the other goals. For example, with Scenario 1, we find a 

solution for the pod depth and TPU thickness that lie within the specified constraints and 

achieves the internal energy target as close as possible with no preference to weight or 

depth. Scenarios 4-6 split the preference between two goals equally, while giving no 

preference to the third goal. Scenarios 7-12 give a higher preference to one goal, a low 

preference to another goal, and no preference to the last goal. Scenario 13 represents an 

equal preference split among the three goals. Scenarios 14-19 distribute the preference 

among the three goals in different amounts. Exercising the cDSP for all 19 weight 

assignments gives the minimum number of design alternatives needed to span the ternary 

design space. 

As we discussed in Section 2.1.3, a ternary plot has three axes that represent our 

three design goals, and the axis range from 0 to 1 represents the normalized goal value. 

We evaluate the cDSP at each point, and then get a set of design variables which we plug 

into the polynomial response models to calculate the goal values. The goal values must 

be normalized on a scale of 0 to 1 to be plotted and then compared with the other goals to 

find a satisficing region. In our analysis, our objectives were to maximize internal energy, 



www.manaraa.com

 

52 

minimize weight, and maximize pod depth. Therefore, we desire a normalized solution of 

1 for the internal energy and pod depth goals and 0 for the weight goal because we desire 

the maximum and minimum values, respectively. After creating the 19 design points, we 

visualize the solution space by assigning color values to the normalized solutions where a 

dark red color represents a maximum value of 1, and dark blue represents a minimum 

value of 0. Then, we can draw boundaries on each plot based on our preference. To 

visualize all three goals we generate four ternary plots, one to show the goal attainment 

for each of the three goals, and the fourth reveals the overlapping, or satisficing, region. 

We show the four ternary plots in Figure 2.8 below. 

a) b) 

c) d) 

Figure 2.8 Ternary plots showing the goal attainment for a) internal energy (Goal 

1), b) weight (Goal 2), c) pod depth (Goal 3), and d) the satisficing 

solution space. 
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In Figure 2.8-a, we see the relative attainment with respect to the internal energy 

Goal 1. Because our goal was to maximize internal energy, we search for solutions in the 

red region. However, as we can quickly see from the color contour, if we limited the 

solution space to the red region alone, that would severely limit our number of design 

alternatives. Therefore, we relax our preferences a bit to open up the design space and 

allow any design with at least 33.3 J of internal energy. In Figure 2.8-b, we see the 

relative attainment with respect to weight, Goal 2. As our goal was to minimize system 

weight, we look for solutions in the dark blue regions. Thankfully this includes most of 

the design space and we do not need to relax our preferences. In Figure 2.8-c we the 

attainment for pod depth, Goal 3, and again most of the space is acceptable and we do not 

need to relax our preferences. In Figure 2.8-d, we see the overlapping, or satisficing 

solution space that contains all the design points that satisfy our three design goals. There 

are 9 alternatives for selection, however they are all very similar, therefore we simply 

choose the design with the largest internal energy value. The final design point number 

14, shown as the green dot in Figure 2.8-d, had only 34 J internal energy, a system weight 

of 0.066 kg, and a pod depth of 50.8 mm. In this problem, we are not interested in the 

results, but rather exercising our design constructs and solution space exploration tools to 

verify their use for product design. Now that we understand the cDSP, the CEF, and 

ternary plot tool, in the next section, we use them to design two components together 

with respect to the same set of system-level goals. 

2.3 Demonstrating Our Method To Design Two Helmet Components 

In this section, we use the same method and constructs demonstrated in the 

previous example but here we demonstrate the full functionality by designing two 
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components. We design the foam liner and the composite shell from the actual helmet 

prototype to establish the efficacy of our goal-oriented, inverse decision-based design 

method for systems design. 

2.3.1 Helmet Region Problem Description 

The example from the previous section confirmed the cDSP, CEF, and ternary 

plot tool we selected for our inverse design method. However, the flat test section was a 

gross simplification of the real football helmet and the results do not provide insight into 

the helmet functionality. In this section, we take another step towards our ultimate goal of 

designing the entire helmet and make two key improvements from the previous work. 

First, we use realistic geometry from a region taken directly from the prototype helmet. 

Second, we demonstrate the design of two components with respect to the same set of 

system level goals. We only need to design two components to demonstrate the forward 

information flow, model integration, and goal-oriented inverse decision-based design. In 

the future we can build on this work again to add additional components or alter the 

design goals and requirements to design the final helmet section.  

Until we are able to quantify the exact mechanisms that cause MTBI, we assume 

that a football helmet must have a high-energy absorption capacity, an ability to mitigate 

stress waves, and a minimum total weight to lower the risk of MTBI. In terms of our 

problem definition, these key performance characteristics translate to three system-level 

goals, namely, to dissipate the kinetic energy (Goal 1), minimize total system weight 

(Goal 2), and to mitigate the stress waves (Goal 3). We formulate Goal 1 in terms of 

internal energy and our goal is to achieve the target value of 100% energy dissipation. In 

other words, the system completely transformed the kinetic energy into internal energy. 
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In reality, it might be nearly impossible to achieve the target, but with our framework we 

can still find a design that achieves our goal with a minimum deviation from the target. 

We formulate Goal 2 in terms of mass and our goal is to achieve the minimum possible 

weight our design constraints allow. We measure stress wave mitigation, Goal 3, by 

taking the time integral of the reaction force at the interface between the foam and head. 

The time integral of the reaction force is formally called the impulse, with units of 

Newton*seconds (N*s) and is a measure of the stress history multiplied by the surface 

area of the foam. 

Ideally, to design a helmet region, we would have a collection of actual game data 

that we could use to model boundary conditions and set performance targets specific to 

player position. However, at this time we are more interested in demonstrating the 

method, therefore we continue to use the current industry standard test metrics provided 

by NOCSAE. We select the standard test method for testing newly manufactured football 

helmets in the top position by means of a twin-wire drop test [8]. We use FEA to simulate 

an impact normal to the surface of the shell using the prescribed boundary conditions 

listed in the NOCSAE standards. We used data collected from the FEA to build 

metamodels that we use in the cDSP to generate design alternatives under uncertainty. 

The scope of our design study is limited to the foam liner and composite shell only, and 

as we mentioned earlier, we select the top region of the helmet for design exploration 

because it is known be one of the more dangerous helmet regions with respect to brain 

injury [25, 26, 48]. Figure 2.9 below shows the top helmet region used in this study. 
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a) 
b) 

c) d) 

Figure 2.9 Top helmet region showing a) the minimum foam depth (25.4 mm), b) 

the maximum foam depth (50.8), c) the minimum area ratio (AR = 0.5), 

d) the maximum area ratio (AR = 1.0). 

In Figure 2.9, we show the top helmet region at the minimum and maximum 

configurations in a/b and c/d, respectively. The foam liner design variables are taken 

from Rush et al. [48] who determined the foam depth, area ratio (AR), foam density, and 

input kinetic energy were among the primary factors that affect energy dissipation. The 

foam depth is measured as the normal distance from the inside of the shell. Our minimum 

foam depth is 25.4 mm, maximum foam depth is 50.8 mm, with a constraint on the 

maximum foam compression distance cannot exceed 50% of the original value. For 

example, if the original foam depth were 38.1 mm, the maximum compression cannot 

exceed 19.05 mm (38.1 – (0.5*38.1)). The Area ratio (AR) is the ratio of foam surface 

area to head surface area. The minimum AR is 0.5 and maximum AR is 1.0 that 

represents 50% and 100% coverage, respectively. We select three foam options from 
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Rush et al.’s experimental work. All three options are made by SunMate (Dynamic 

Systems Inc.) and vary in density from Medium (79.9 kg/m3), to Medium-Firm (82.8 

kg/m3), to Firm (84.3 kg/m3). Rush [48] was limited to the foam cylinder design by in-

house manufacturing capabilities, however we suspect trapezoidal or pyramid shapes 

would be better suited for helmet curvature and fill the gaps between the head and the 

outer shell. Therefore, we maximize the foam volume while maintaining the same design 

parameters (depth, density, and AR). These trapezoidal ‘block-like’ shapes are common 

to helmets and could easily be injection molded for the final helmet design. Finally, we 

represent the input kinetic energy as a velocity because our impacting mass remains 

constant. We calculated the final velocity from free-fall at 2, 3, and 4 ft. heights as our 

input velocity. In the shell design study, we use shell thickness and density as our design 

variables. The shell thickness has a minimum and maximum value of 1 mm and 5 mm 

respectively. The shell density is taken to be composite density of a polypropylene (PP) 

base with short E-glass fibers added in volume fractions (VF) ranging from 10% to 50%. 

We select the 10% E-glass VF as our minimum and 50% VF as our maximum, 

corresponding to composite densities from 970 kg/m3 to 1330 kg/m3, respectively. In 

Table 2.5 below we show the design variables and their respective ranges for the foam 

liner and composite shell. 
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Table 2.5 Composite shell and foam liner design variables and ranges. 

 Minimum Median Maximum 

Foam depth (mm) 25.4 38.1 
50.8 

AR 0.5 0.75 
1.0 

Foam Density 

(kg/m3) 
79.9 82.8 

84.3 

Velocity (m/s) 3.46 4.24 
4.89 

Shell thickness 

(mm) 
1 3 

5 

Shell density 

(kg/m3) 
970 1120 

1330 

In the next section, we describe the four steps to our method and show the cDSP 

for both components.  

2.3.2 The Concept Exploration Framework and compromise Decision Support 

Problem to Design the Helmet Region 

In this section, we detail the four steps to our goal-oriented, inverse decision-

based design method with special emphasis on the CEF and the cDSP. We show the goal-

oriented, inverse decision-based design method formulated for helmet design in Figure 

2.10 below. 
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Figure 2.10 The four steps required to design two helmet components with the goal-

oriented, inverse decision-based design method. 

The first step in the method shown in Figure 2.10 is to establish a forward flow of 

information that links each component to the system-level goals in a consistent way. To 

establish the “forward modeling and information flow” (shown by the thick blue arrow) 

we track the energy transferred from a helmet impact, through the composite shell, 

through the foam liner, and then into the player’s head. The green dashed arrow 

represents soft information about a component, to be determined in the design analysis. 

Solid green arrows represent our known design information, or “hard information.” The 

foam liner and composite shell differ greatly in form and function, however must be 

represented in such a way that ensures a proper flow of information. To do this, we create 

metamodels that describe the three system-level goals in terms of the individual 

component design variables. Then we can find satisficing solutions for one component, 

and then pass hard information back to design another component in an inverse fashion. 

In Step 2, we use the CEF and cDSP to find satisficing solutions for the foam liner that 
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achieve the 3 system-level goals as close as possible. All the design information going 

into the analysis at this point, represented by the dashed green arrows, is soft information. 

After the analysis, we verify the design decisions with FEA, and then modify our design 

goals, constraints, and targets. In Step 3, we pass hard information back to design the 

composite shell with respect to modified design goals. In Step 4 we verify all design 

solutions with FEA. 

In Steps 2 and 3, we manage the design information with the CEF and generate 

satisficing solutions under uncertainty with the cDSP. Recall the generic formulation of 

the CEF in Figure 2.3. The process begins by identifying the system-level performance 

goals and targets that relate to individual components. Then, we work through the 

Processors, from A to E, collecting information for the cDSP. After the metamodeling in 

Processor E is complete, we feed all the required information into the cDSP (Processor F) 

and run to complete Processors G and H. Processors G, H allow the designer to explore 

the solution space with multiple design points generated with the cDSP and a weight 

sensitivity analysis. Finally, the designer can make decisions from the available 

satisficing solutions and determine if the solutions are acceptable through verification or 

other means. The cDSP consists of four key sections: given, find, satisfy, and minimize. 

In the “given” section, the designer lists all the relevant information about the system 

parameters such as the number of system variables, constraints, goals, constraint 

functions, goal functions, and goal targets. Then the designer may specify the variables 

they want to “find”, the system constraints the variables must “satisfy” and deviation 

functions that must be “minimized.” We give more details regarding the formulation and 
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utility of the cDSP and CEF in Sections 2.1.1 and 2.1.2, respectively. In the next two 

sections, we describe the cDSP for the foam liner and the composite shell. 

2.3.2.1 The compromise Decision Support Problem and Concept Exploration 

Framework for the Foam Liner 

In Step 2 of our method, we use CEF processors A, B1, B2, C, D, E, and F to find 

satisficing solutions for the foam liner that achieve the system-level goals as close as 

possible. We show the CEF used in Steps 2 and 3 for the foam liner and composite shell 

analysis below in Figure 2.11. 

 

Figure 2.11 The Concept Exploration Framework (CEF) for the foam liner. 

Targets 1, 2, and 3 correspond to our goals for internal energy (59.79 J), weight 

(0.15 kg), and impulse (25.8 N*s). We communicate the targets directly into the cDSP 

(Processor F). In Processor A, we list and communicate the foam depth, AR, density, and 

impact velocity variables and their respective ranges to the cDSP. We do not have math 
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models available for Processor B1, therefore we leave it out of the CEF formulation. As a 

result, we used processor B2, C, D, and E to create a set of metamodels from a DOE that 

describe the system-level goals and constraints in terms of the design variables (factors). 

Each of the four factors have lower, middle, and upper bounds (see Table 2.5). A three-

level, four factor (34) full factorial DOE would require 81 simulations; however, to 

reduce the computational costs, we chose a fractional factorial DOE (34-1) that requires 

only 27 simulations. We show the 34-1 DOE for the foam liner in Table 2.6 on the next 

page.  
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Table 2.6 Fractional factorial (34-1) Design of Experiments (DOE) for the foam liner. 

Exp. Depth (mm) Area Ratio (AR) Density (kg/m3) Velocity (m/s) 

1 25.4 0.5 79.90 3.458 

2 38.1 0.5 82.80 3.458 

3 50.8 0.5 84.30 3.458 

4 38.1 0.5 79.90 4.236 

5 50.8 0.5 82.80 4.236 

6 25.4 0.5 84.30 4.236 

7 50.8 0.5 79.90 4.89 

8 25.4 0.5 82.80 4.89 

9 38.1 0.5 84.30 4.89 

10 38.1 0.75 79.90 3.458 

11 50.8 0.75 82.80 3.458 

12 25.4 0.75 84.30 3.458 

13 50.8 0.75 79.90 4.236 

14 25.4 0.75 82.80 4.236 

15 38.1 0.75 84.30 4.236 

16 25.4 0.75 79.90 4.89 

17 38.1 0.75 82.80 4.89 

18 50.8 0.75 84.30 4.89 

19 50.8 1 79.90 3.458 

20 25.4 1 82.80 3.458 

21 38.1 1 84.30 3.458 

22 25.4 1 79.90 4.236 

23 38.1 1 82.80 4.236 

24 50.8 1 84.30 4.236 

25 38.1 1 79.90 4.89 

26 50.8 1 82.80 4.89 

27 25.4 1 84.30 4.89 

 We used SolidWorks (Dassault Systems, Waltham, MA) to model the 27 DOE 

geometries and then imported the files into Abaqus Explicit CAE (Dassault Systems, 

Waltham, MA) for analysis. More information regarding the FEA can be found in 

Section 2.3.3. We used the response from the 27 DOE experiments to created four first-

order polynomial response surface metamodels (response models). One for the three 
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system-level goals, and one to describe compression to use as a constraint. The four 

polynomial response models used in Step 2 are listed below. 

Internal energy (IE) as a function of depth (D), AR, density (rho), and velocity (V). 

𝐼𝐸(D, AR, rho, V)  = −68.08173 + 178.7402 ∗ D + 4.544444 ∗ AR + 0.3706196 ∗

rho + 14.87528 ∗ V   (2.14) 

Weight (Wt) as a function of depth (D), AR, and density (rho). 

𝑊𝑡(D, AR, rho)  = 0.028208 + 1.1566 ∗ D + 0.062556 ∗ AR + 0.000723 ∗ rho 

 (2.15) 

Impulse (Imp) as a function of depth (D), AR, density (rho), and velocity (V). 

𝐼𝑚𝑝(D, AR, rho, V) = 5.15542 − 28.8714 ∗ D − 2.86444 ∗ AR − 0.0910578 ∗ rho +

9.65291 ∗ V   (2.16) 

Compression (C) as a function of depth (D), AR, density (rho), and velocity (V). 

𝐶 (D, AR, rho, V)  = 0.15383 + 0.3535 ∗ D − 0.011584 ∗ AR − 0.0019516 ∗ rho +

0.0059301 ∗ V  (2.17) 

We did not find much variation in the “goodness of fit” parameters between first, 

second, third, and fourth order response models. Therefore, we selected the first order 

models because they are much easier to formulate into the cDSP and should still provide 

a reasonably accurate result. The two “goodness of fit” parameters used were the 

Coefficient of Variation of the Mean Absolute Error (CVMAE) and R2. We show the 

“goodness of fit” details for the four response models in Table 2.7 below. 
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Table 2.7 Goodness of fit details for the foam liner polynomial response models. 

Response 

Model 

Internal 

Energy 

Weight Impulse Compression 

Order 1 1 1 1 

CVMAE 0.0725 0.0116 0.0475 0.0909 

R2 0.9283 0.9867 0.9249 0.9183 

All design information regarding the factors and ranges from CEF processor A, 

and the metamodels created with processors B2, C, D, and E are fed into processor F to 

formulate the cDSP. We show the formal Step 2 cDSP including the four key Given, 

Find, Satisfy, Minimize sections below (Recall the problem description in Section 2.3.1).  

Given: 

(4) The system-level performance goals identified for our helmet region 

➢ Maximize internal energy (IE) 

➢ Minimize system weight (Wt) 

➢ Minimize impulse (Imp) 

➢ Minimize compression (comp) 

➢ Achieve target energy dissipation (100%) 

➢ Target value for internal energy, IE = 59.79 J 

➢ Target value for system weight, Wt = 0.15 kg 

➢ Target value for impulse = 25.78 N*s 

➢ Maximum compression, C = D-12.7 mm 

 

(5) The foam liner polynomial response models 

➢ Internal energy (IE), see Equation 1 

➢ Weight (Wt), see Equation 2 

➢ Impulse (Imp), see Equation 3 

➢ Compression (Comp), see Equation 4 

 

(6) Variability in system variables 

We provide the system variables in the Find and Satisfy sections. 

 

Find: 

System Variables 

X1, foam depth (D) – 25.4 to 50.8 mm 

X2, Area Ratio (AR) – 0.5 to 1.0 

X3, foam density (rho) – 79.9 to 84.3 kg/m3 

X4, impact velocity (V) – 3.46 to 4.89 m/s 
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Satisfy: 

System Constraints 

➢ Minimum Internal Energy Constraint 

 𝐼𝐸 ≥ 30 𝐽 (2.18) 

➢ Maximum Weight Constraint 

 𝑊𝑡 ≤ 0.213 𝑘𝑔 (2.19) 

➢ Maximum Impulse Constraint 

 𝐼𝑚𝑝 ≤ 45.82 𝑁 ∗ 𝑠 (2.20) 

➢ Maximum Compression Constraint 

 𝐷 − 𝐶𝑜𝑚𝑝 ≥ 12.7 𝑚𝑚 (2.21) 

 

System Goals 

Goal 1:  

➢ Maximize Internal Energy 

 
𝐼𝐸(𝑋𝑖)

𝐼𝐸𝑇𝑎𝑟𝑔𝑒𝑡
+ 𝑑1

− − 𝑑1
+ = 1 (2.22) 

Goal 2: 

➢ Minimize System Weight 

 
𝑊𝑡𝑇𝑎𝑟𝑔𝑒𝑡

𝑊𝑡(𝑋𝑖)
− 𝑑2

− + 𝑑2
+ = 1 (2.23) 

Goal 3:  

➢ Minimize Impulse 

 
𝐼𝑚𝑝𝑇𝑎𝑟𝑔𝑒𝑡

𝐼𝑚𝑝(𝑋𝑖)
− 𝑑3

− + 𝑑3
+ = 1 (2.24) 

Variable Bounds 

X1 – 25.4 to 50.8 mm 

X2 – 0.5 to 1.0 

X3 – 79.9 to 84.3 kg/m3 

X4 – 3.46 to 4.89 m/s 

Bounds on deviation variables 

 𝑑𝑖
−, 𝑑𝑖

+ ≥ 0 and 𝑑𝑖
− ∗ 𝑑𝑖

+ = 0, 𝑖 = 1,2,3 (2.25) 

Minimize: 

We minimize the deviation function. 

 𝑍 =  ∑ 𝑊𝑖(𝑑𝑖
−

3

𝑖=1

+ 𝑑𝑖
+); ∑ 𝑊𝑖

3

𝑖=1

= 1 (2.26) 

 

 We formulate the cDSP (shown above) in processor F, and then run it 19 times 

according to a weight sensitivity analysis in processor G to obtain 19 design points. In the 

last CEF processor H we plot the design points with a ternary plot and then explore the 

solution space to find satisficing solutions for each of our design goals. Finally, we make 

design decisions and pass the hard design information back to formulate the cDSP in Step 
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3 with respect to the new information and modified design goals. More information 

regarding the weight sensitivity analysis (processor G) and solution space exploration 

(processor H) will be discussed in Section 2.3.4. In the next section, we describe the 

cDSP for the Step 3 composite shell. 

2.3.2.2 The compromise Decision Support Problem and Concept Exploration 

Framework for the Composite Shell 

Step 3 of our method is very similar to Step 2; however, we set the targets for the 

shell using the modified requirements and goals passed back from the foam liner analysis 

(Step 2). Because we use the foam geometry from the Step 2 design decisions, we only 

need to vary the shell design variables in this step. Additionally, we selected an impact 

velocity in Step 2 that we hold constant in this analysis.  

 

Figure 2.12 The Concept Exploration Framework (CEF) for the composite shell. 
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The three target values listed in Figure 2.12 above correspond to the adjusted 

targets from Step 2. We identify only two factors for the shell, namely, thickness and 

composite density, which we determine from the volume fraction of E-glass fiber. Both 

factors had three levels (32), which is only 9 experiments, therefore time we used a full 

factorial DOE. We show the (32) full-factorial DOE in Table 2.8 below. 

Table 2.8 Full factorial (32) Design of Experiments (DOE) for the composite shell. 

Exp. 

Thickness 

(mm) 

Density 

(kg/m3) 

1 1 970 

2 1 1120 

3 1 1330 

4 3 970 

5 3 1120 

6 3 1330 

7 5 970 

8 5 1120 

9 5 1330 

We used DOE run number 24 from Step 2 as our baseline mesh for this analysis. 

To model the 9 DOE composite shell variations, we simply converted the composite shell 

mesh from 3D continuum elements to shell elements in Abaqus Explicit CAE (Dassault 

Systems, Waltham, MA) and then we assigned shell thickness values depending on the 

experiment. More information regarding the FEA can be found in Section 2.3.3. We used 

the response from the 9 DOE experiments to re-create the four polynomial response 

surface metamodels (response models) from Step 2. The four polynomial response 

models used in Step 3 are listed below. 

Internal energy (IE) as a function of thickness (t) and density (rho). 

IE(t, rho) =  0.0120015318 ∗ rho + 1760.927676 ∗ t − 0.3183868502 ∗ t ∗ rho +
38.14990639 − 208262.5 ∗ (t^2) − (4.43324515 ∗ (10^(−06)) ∗ (rho^2))  (2.27) 
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Weight (Wt) as a function of thickness (t) and density (rho). 

Wt(t, rho) =  3.2817108 ∗ (10^(−06)) ∗ rho + 10.02042 ∗ t + 0.033070678 ∗ t ∗

rho + 0.083487294 − 1670.0701 ∗ (t^2) + (4.9352724 ∗ (10^ − 22) ∗ (rho^2)) 

 (2.28) 

Impulse (Imp) as a function of thickness (t) and density (rho). 

Imp(t, rho) =  −0.003511421371 ∗ rho + 1245.756881 ∗ t − 0.04013761468 ∗ t ∗

rho + 42.14854726 − 151250 ∗ t ∗∗ 2 + (1.631393298 ∗ (10^(−06)) ∗ (rho^2)) 

 (2.29) 

Compression (C) as a function of thickness (t) and density (rho). 

C(t, rho) =  0.032028 − 1.2323 ∗ t − (5.414 ∗ (10 ∗∗ (−06)) ∗ rho)  (2.30) 

We found the “goodness of fit” parameters dropped from the previous analysis, 

likely because there were fewer design points (9 instead of 27). Therefore, we selected 

the best alternative among the first, second, third, and fourth order response models. The 

two “goodness of fit” parameters used were the CVMAE and R2. We show the “goodness 

of fit” details for the four response models in Table 2.9 below. 

Table 2.9 Goodness of fit details for composite shell polynomial response models. 

Response 
Internal 

Energy 
Weight Impulse Compression 

Order 2 2 2 1 

CVMAE 0.0232 0.0063 0.0067 0.0176 

R2 0.6269 1.0 0.9704 0.9820 

Just as in Step 2, all design information collected through CEF processors A, B2, 

C, D, and E are fed into processor F to formulate the cDSP. We show the formal Step 3 
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cDSP including the four Given, Find, Satisfy, Minimize sections below (Recall the 

problem description in Section 2.3.1).  

Given: 

(7) The adjusted performance goals identified for our shell 

➢ Maintain internal energy (IE) 

➢ Minimize system weight (Wt) 

➢ Minimize impulse (Imp) 

➢ Minimize compression (comp) 

➢ Achieve target energy dissipation 

➢ Target value for internal energy, IE = 48.36 J 

➢ Target value for system weight, Wt = 0.127 kg 

➢ Target value for impulse = 41.32 N*s 

➢ Maximum compression, C = D-12.7 mm 

 

(8) The composite shell polynomial response models 

➢ Internal energy (IE), see Equation 14                                             

➢ Weight (Wt), see Equation 15                                                                                                      

➢ Impulse (Imp), see Equation 16                                                                                                   

➢ Compression (Comp), see Equation 17                                                                                        

 

(9) Variability in system variables 

We provide the system variables in the Find and Satisfy sections. 

 

Find: 

System Variables 

X1, shell thickness (t) – 1 to 5 mm 

X2, density (rho) – 970 to 1330 kg/m3 

 

Satisfy: 

System Constraints 

➢ Minimum Internal Energy Constraint 

 𝐼𝐸 ≥ 46.3 𝐽 (2.31) 

➢ Maximum Weight Constraint 

 𝑊𝑡 ≤ 0.213 𝑘𝑔 (2.32) 

➢ Maximum Impulse Constraint 

 𝐼𝑚𝑝 ≤ 41.8 𝑁 ∗ 𝑠 (2.33) 

➢ Maximum Compression Constraint 

 𝐷 − 𝐶𝑜𝑚𝑝 ≥ 12.7 𝑚𝑚 (2.34) 

 

System Goals 

Goal 1:  

➢ Maximize Internal Energy 
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𝐼𝐸(𝑋𝑖)

𝐼𝐸𝑇𝑎𝑟𝑔𝑒𝑡
+ 𝑑4

− − 𝑑4
+ = 1 (2.35) 

Goal 2: 

➢ Minimize System Weight 

 
𝑊𝑡𝑇𝑎𝑟𝑔𝑒𝑡

𝑊𝑡(𝑋𝑖)
− 𝑑5

− + 𝑑5
+ = 1 (2.36) 

Goal 3:  

➢ Minimize Impulse 

 
𝐼𝑚𝑝𝑇𝑎𝑟𝑔𝑒𝑡

𝐼𝑚𝑝(𝑋𝑖)
− 𝑑6

− + 𝑑6
+ = 1 (2.37) 

Variable Bounds 

X1 – 1 to 5 mm 

X2 – 970 to 1330 kg/m3 

 

Bounds on deviation variables 

 𝑑𝑖
−, 𝑑𝑖

+ ≥ 0 and 𝑑𝑖
− ∗ 𝑑𝑖

+ = 0, 𝑖 = 1,2,3 (2.38) 

Minimize: 

We minimize the deviation function. 

 𝑍 =  ∑ 𝑊𝑖(𝑑𝑖
−

3

𝑖=1

+ 𝑑𝑖
+); ∑ 𝑊𝑖

3

𝑖=1

= 1 (2.39) 

 

We formulate the cDSP (shown above) in processor F, and then run it 19 times 

according to a weight sensitivity analysis in processor G to obtain 19 design points. In the 

last CEF processor H we plot the design points with a ternary plot and then explore the 

solution space to find satisficing solutions for each of our design goals. Finally, we make 

design decisions verify our final results with FEA. In the next section, we review the 

FEA models used to develop the metamodels and verify our design results. 

2.3.3 Finite Element Analysis for the Foam Liner and Composite Shell 

In this section we describe the FEA models used to develop the four metamodels 

for Step 2, the four metamodels for Step 3, and verify both of the design results in Step 4. 

We created 27 FE meshes for Step 2 (one for each DOE runs), 3 meshes for Step 3 (1 

mesh per three DOE runs), where the two meshes for Step 4 (verification) were taken 
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from the previous analysis, making 30 different meshes and 38 simulations total. Each 

mesh includes a shell and a foam liner that consists of 4 foam blocks and a “plug” in the 

center. The stress wave damper can replace the “plug” in future work. First, we modeled 

the baseline geometry using the top region of the actual full-scale prototype helmet in 

SolidWorks. We show an example of the of the top region geometry in Figure 2.13 

below. 

 

 

Figure 2.13 Example top helmet region geometry used for Finite Element Analysis 

(FEA) showing the shell-side (left), and the foam liner side (right). 

In Step 2, we use the baseline 3 mm shell thickness and create the 27 foam liner 

geometries according to the DOE specifications in Table 2.6. We used the geometries 

from DOE runs 19-27 as our baseline design and then vary the gap distance between the 

foam blocks to achieve the appropriate Area Ratio for the other geometries. We did this 

because the Area Ratio does not change linearly as the thickness changes. The design 

decision from Step 2 closely matched one of the 27 models, therefore in Step 3 we held 

the selected foam liner geometry but changed the shell thickness depending on the DOE 

specifications. The geometry specifications for both Step 4 verification analysis were 

close enough to previous geometries that we reused meshes and only altered the material 

properties and boundary conditions. 
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For this analysis, we modeled 7 different materials, including 3 shell options, 3 

foam options, and 1 additional shell option for the final design verification.  We select 

three densities of SunMate brand foam (viscoelastic slow recovery, open-cell 

polyurethane foam) available for purchase: Medium (79.9 kg/m3), Medium-Firm (82.8 

kg/m3), and Firm (84.3 kg/m3). We used low rate (0.1/s) and high rate (600/s) 

compression test data collected by Rush et al. [48] to model the foam materials using the 

elastic, low-density foam model available in Abaqus Explicit CAE. The baseline 

composite shell material is an injection moldable polypropylene (PP) matrix with short, 

Chemically Coupled (CC) E-glass fibers manufactured by RTP Co.. In step 2, we 

selected three options from their list of RTP 100 series (PP with short E-glass CC fibers) 

that ranged from 10 to 50% E-glass. We modeled RTP 101 CC (10% E-glass), 105 CC 

(30% E-glass) and 109 CC (50% E-glass) as linear elastic-plastic materials using uniaxial 

tension test data provided by the manufacturer. The shell material decision made in Step 

3 most closely resembled the RTP 103 CC (20% E-glass) material; therefore, we created 

a fourth shell material to complete the Step 4 verification analysis. We conducted a single 

element FEA to verify each material by comparing the stress-strain behavior to their 

respective source. We list the materials used in our analysis in Table 2.10 below. 
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Table 2.10 Material properties for the 3 foam densities and 4 shell materials used in 

this analysis. 

Material 
Material 

Model 

Density 

(tonne/mm3) 

Elastic 

Modulus 

(MPa) 

Poisson’s 

Ratio 

Medium 
Low Density 

Foam 
7.99*10-11 N/A N/A 

Medium-Firm 
Low Density 

Foam 
8.28*10-11 N/A N/A 

Firm 
Low Density 

Foam 
8.43*10-11 N/A N/A 

RTP 101 
Elastic-

Plastic 
9.7*10-10 3103 0.281 

RTP 103 
Elastic-

Plastic 
1.03*10-9 4482 0.212 

RTP 105 
Elastic-

Plastic 
1.12*10-9 6206 0.25 

RTP 109 
Elastic-

Plastic 
1.33*10-9 11722 0.334 

We conducted a mesh refinement in another study with a similar geometry that 

consist of a curved 3 mm shell and a foam liner with similar dimensions. We conducted 

an h-refinement and p-refinement where we increased the number of elements, and also 

increased the order of elements, respectively. For both components, the linear elements in 

the h-refinement had 8 nodes and 1 integration point (C3D8R) where the quadratic 

elements in the p-refinement had 20 nodes and 8 integration points (C3D20R). We 

partitioned the shell into 4 quadrants, and the rest of the components were left in their 

original configuration. For each analysis, we verified the mesh did not have errors and all 

aspect ratios less than 5, with the majority less than 3. The refinement study was 

concluded after 14 job submissions, 7 refinements for the h-refinement and 7 refinements 

for the p-refinement. Therefore, each component had 14 total alternative mesh scenarios. 

From the results, we determined linear C3D8R elements were acceptable for both parts 



www.manaraa.com

 

75 

and a global seed size of 1.5 for the shell and 3 for the foam liner. In Step 3, we 

converted the shell component from C3D8R elements S4R shell elements and verified 

our results were not influenced by the element type conversion. Table 2.11 below lists the 

average mesh details for the Step 2, 3, and 4 analysis. 

Table 2.11 Finite element average mesh details for the Step 2, 3, and 4 analysis. 

 
# nodes 

C3D8R 

elements 
S4R elements CPU time 

Step 2 52253 41071 N/A 0:58:83 

Step 3 64286 51833 5387 1:45:30 

Step 4 67101 54527 5387 2:41:25 

In the next section, we describe the weight sensitivity analysis, solution space 

exploration, and design decisions made for Step 2 and 3. 

2.3.4 Integrated Solution Space Exploration of the Foam Liner and Composite 

Shell 

Herein, we describe the integrated solution space exploration of the foam liner 

with respect to the system-level goals and the composite shell with respect to the 

modified requirements and goals. Both cDSP’s for the foam liner and composite shell 

were exercised 19 times to generate 19 sets of design alternatives. As we discussed 

before, the weights range from 0 to 1 where a value of 1 represents the highest 

preference, and a value of 0 represents no preference. Scenarios 1-3 represent a 

maximum weight assignment to find design solutions that satisfy the design requirements 

and achieves a goal as close as possible with no preference on the other goals. Using the 

foam liner cDSP as an example, with Scenario 1, we find a solution for the foam liner 

depth, AR, density, and impact velocity variables that lie within the specified constraints 

and achieves the internal energy target as close as possible with no preference to weight 
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or impulse. Scenarios 4-6 split the preference between two goals equally, while giving no 

preference to the third goal. Scenarios 7-12 give a higher preference to one goal, a low 

preference to another goal, and no preference to the last goal. Scenario 13 represents an 

equal preference split among the three goals. Scenarios 14-19 distribute the preference 

among the three goals in different amounts. Exercising the cDSP for all 19 weight 

assignments gives the minimum number of design alternatives needed to span the ternary 

design space. In our analysis, our objectives were to maximize internal energy, minimize 

weight, and minimize impulse. Therefore, we desire a normalized solution of 1 for the 

internal energy goal and 0 for the weight and impulse goals because they would represent 

the maximum and minimum values, respectively. After creating the 19 design points, we 

visualize the solution space by assigning color values to the normalized solutions. Then, 

we can draw boundaries on each plot based on our preference. To visualize all three goals 

we generate four ternary plots, one to show the goal attainment for each of the three 

goals, and the fourth reveals the overlapping, or satisficing, region. In the following 

section, we describe the solution space exploration for the foam liner and the composite 

shell cDSPs and then explain the tradeoffs necessary to find a satisficing design. 

2.3.4.1 Solution Space Exploration and Tradeoff Analysis of the Foam Liner to 

Achieve the System-Level Goals 

The requirement for the designer in Step 2 is to find values for the foam liner 

design variables that achieve the system-level goals as close as possible. For the internal 

energy goal in the liner cDSP, we are interested in dissipating the maximum impact 

energy possible. Assuming the worst-case scenario from the impact velocities listed 

earlier, we set the target for the internal energy goal at 59.78 J, which would mean a 
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100% dissipation, and assign a constraint of 30 J. In other words, we desire 100% 

dissipation, but we require at least 50% dissipation in the worst-case impact scenario. For 

the weight Goal 2, we are interested in minimizing the total weight of the region, the 

smaller the better. We set the target weight equivalent to the minimum possible weight, 

from the DOE, that corresponds to approximately 0.15 kg. Likewise, we constrained the 

system to a weight equivalent to the maximum weight from the DOE that is 

approximately 0.213 kg. In other words, we desire the lightest region, with a maximum 

weight of 0.213 kg. For the impulse Goal 3, we are interested in minimizing the impulse 

experienced by the head. We calculated the impulse by taking the time integral of the 

reaction force at the pinned nodes on the foam liner. Lower impulse values represent a 

higher stress wave mitigation, lower force magnitudes, or a shorter impact duration. Like 

the weight constraints, we set the target impulse value as the minimum value achieved 

from the DOE, that is 25.78 N*s and constrained the maximum impulse to 45.82 N*s. 

The cDSP and design variable constraints were listed in Section 2.3.2. 

We exercised the cDSP 19 times and generated 19 sets of solutions for the foam 

liner depth, area ratio (AR), foam density, and impact velocity that all fall within our 

design constraints. We plug the design variable values into the polynomial response 

models to find values for each of our design goals. We created three sets of normalized 

goal values (one for each goal) using the following equation, 

𝑌𝑖−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
     (2.40) 

where 𝑌𝑖 is the goal value of point 𝑖 from 1 to 19, 𝑚𝑖𝑛 is the minimum value, and 𝑚𝑎𝑥 is 

the maximum value in the range of design points. We used the three sets of normalized 

goal values to create the three ternary plots shown in Figure 2.14 below. 
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a)  b)  

c)   d)   

Figure 2.14 Ternary plots showing the goal attainment for a) internal energy (Goal 

1), b) weight (Goal 2), c) impulse (Goal 3), and d) overlapping. 

 Figure 2.14-a shows the liner cDSP results when we normalize the internal energy 

(Goal 1) values. The target of 59.78 J (100% dissipation) was unobtainable, however the 

maximum internal energy achievable under the design constraints was 49.5 J. Therefore, 

49.5 J becomes our target, normalized value of 1 and appears dark red on the plot. We set 

a preference boundary, shown by the dark blue dashed line, to limit the preferred design 

space to 40 J internal energy or higher. Figure 2.14-b shows the liner cDSP results when 

we normalized the weight (Goal 2) values. The target weight was 0.15 kg and because it 

should be the minimum result, the normalized value is 0 and appears as dark blue. There 

is not much variation in the weight goal results. Therefore, we set a preference boundary, 

shown by the bright red dashed line, to include all design points that achieved our target 
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weight of 0.15 kg. Figure 2.14-c shows the normalized impulse (Goal 3) values where the 

target impulse value of 25.78 N*s appears as dark blue. We set a preference boundary, 

shown by the lime green dashed line, to include all results with 27.7 N*s or lower. To set 

the preference boundaries, we are essentially bounding the solution space to the results 

that most closely achieve our goals. One can observe the conflicting nature of these three 

goals from the preferred color concentrations located in opposite corners of the ternary 

plot. Figure 2.14-d shows the preferred design regions for each goal overlapped onto one 

ternary plot. Ideally, there would be an overlapping region that contains all the satisficing 

solutions for the three goals. In other words, to obtain the optimal solution with respect to 

one goal, we must sacrifice the performance of another. To find a satisficing region, we 

must make a compromise and relax the preferred boundaries for each goal until we find a 

satisficing region. We decided to relax our desired solution for internal energy to include 

all design points that have internal energies greater than 30 J. Likewise, we relax the 

boundaries for goals 2 and 3 to include design points with values less than 0.21 kg and 

impulse values less than 41 N*s. We show the adjusted solution space including the 

satisficing region (green) and satisficing design points in Figure 2.15 below. 
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Figure 2.15 Satisficing solution region for the foam liner showing 8 satisficing 

design points (Yellow) and 11 non-satisficing points (Red). 

Figure 2.15 above shows the relaxed preference boundaries for Goal 1, Goal 2, 

and Goal 3 as blue, red, and greed dashed lines, respectively. The arrows indicate the 

direction of preference, each dot represents a design point where the yellow points are 

satisficing, and the red points are not. The green region, or satisficing region, contains 

only 8 satisficing design points. This means all design points within the green region 

satisfy all three system-level requirements while attaining the goals as close as possible. 

It is now up to the human designer to make a decision from the available satisficing 

design alternatives. In the early stages of our design process, it is somewhat difficult to 

determine which alternative is most attractive. Therefore, to assist in decision-making 

during the conceptual stages, we constructed a simple Multi-Criteria Decision Making 

(MCDM) routine to rank the satisficing design alternatives from 1 to 8 using a prescribed 

set of weight factors. We started by scaling the actual goal data for the 8 designs with the 

Ideal Value (IV) scaling method to normalize the set of goal data. Unlike the ternary plot 

normalization, the IV scaling takes into consideration the goal’s objective and scales 
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from 0 to 1, where a value of 1 represents the best alternative with respect to the 

objective.  At this point in the design process, we did not yet know the best weight factor 

distribution. However, from the FEA results, we observed the foam liner had a major 

influence on the internal energy, therefore we assign the highest weight to Goal 1 and 

then equally distribute the remainder among the other two goals. Then, we multiply the 

set of ideal values by their respective weight factors, sum the products, and then rank the 

results where the highest result denotes the best alternative. We display the results from 

the MCDM raking analysis in Table 2.12 below. 

Table 2.12 Multi Criteria Decision Making (MCDM) matrix and rank results for 

satisficing foam liner design points. 

  Goal 1 Goal 2 Goal 3   

 Weight 0.50 0.25 0.25 Total Rank 

Scenario 

F
ea

si
b

le
 S

ce
n

a
ri

o
s 1 1.000 0.712 0.686 0.850 1 

2 0.604 1.000 0.784 0.748 6 

5 0.606 0.712 1.000 0.731 7 

9 1.000 0.712 0.686 0.850 2 

11 0.607 0.999 0.808 0.755 5 

13 0.607 0.999 0.808 0.755 4 

15 0.606 0.712 1.000 0.731 8 

19 0.607 0.999 0.808 0.755 3 

After reviewing the MCDM results, we select the number 1 ranking scenario, 

Scenario 1, from the list of satisficing solutions. The actual design variables for scenario 

1, calculated from the cDSP, were a depth of 50.8 mm, an AR of 0.99, a density of 84.3 

kg, and an impact velocity of 4.89 m/s. Using our response surface equations for the foam 

liner (1-4), we calculate an internal energy value of 49.52 J, a total system weight of 0.21 

kg, and an impulse value of 40.35 N*s. In other words, this design would be able to 
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dissipate approximately 83% of the impact force ((59.78 J - 49.52 J)/59.78 J, where 59.78 

J was the 100% design goal) from a 4 ft. NOCSAE standard drop test.  

The MCDM ranking routine was only applied for the feasible results, however, if 

we were to perform this routine including all 19 design points, without regard for our 

preference boundaries, we would find the best alternative was Scenario 10. Scenario 10 

had an internal energy value of 47.24 J, a weight of 0.18 kg, and an impulse of 41.78 

N*s. While this scenario may have a high internal energy value, and a low weight, the 

solution point for impulse lies outside the relaxed preference boundary. Additionally, 

scenario 10 had a maximum compression of 30.5 mm, which is close to our maximum 

compression constraint. We made the weight tradeoff and selected design point 1 over 

design point 10 because point 1 satisfies all the goals and in the next analysis we can 

design the shell component with a higher priority on lowering the system weight. 

Finally, we ran a FE verification analysis with the Scenario 1 design variables. 

The design variables are very close to one of the DOE meshes, so we reused mesh 24 and 

only changed the input velocity to 4.89 m/s. We show the FEA design variable input 

parameters and goal value results for comparison to the cDSP calculation in Table 2.13 

below. 

  



www.manaraa.com

 

83 

Table 2.13 Step 2, scenario 1 compromise Decision Support Problem (cDSP) results 

compared to Finite Element Analysis (FEA) results. 

Parameter cDSP result FEA result error 

Depth (m) 0.05079 0.0508 0.02% 

AR 0.999 1 0.10% 

Density (kg/m^3) 84.299 84.3 0.00% 

Velocity (m/s) 4.8897 4.89 0.01% 

Internal Energy (J) 49.52 48.36 -2.34% 

Weight (kg) 0.2104 0.2132 1.35% 

Impulse (N*s) 40.35 41.80 3.58% 

Compression (m) 0.0247 0.0220 -10.84% 

We find good agreement between the FEA results and the cDSP results. We 

observe the internal energy value decreases by 2.34%, the total weight increases by 

1.35%, and the impulse increases by 3.58%. While these are not desirable shifts in 

performance, they are still acceptable and fall within a reasonable uncertainty band. The 

final FEA results show our helmet region can dissipate approximately 81% of the 

maximum input kinetic energy, weighs approximately 0.213 kg, and has a high impulse 

value of 41.8 N*s. We can now move on to Step 3 and pass this design information, 

along with modified goals back to design the composite shell.  

2.3.4.2 Solution Space Exploration of the Composite Shell to Achieve the 

Modified System Goals 

The design decisions made in the solution space exploration for the foam liner 

(Step 2) frame the problem for the composite shell design (Step 3). Our requirement is to 

find satisficing solutions for the composite shell thickness and density that maintain the 

internal energy goal from Step 2 while further achieving the weight and impulse goals 2 

and 3. The composite shell shares the same set of system-level goals with the foam liner; 
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however, we adjust the goal targets and constraints according the results from Step 2. We 

set the new target for the internal energy goal at 48.36 J, and constrain the minimum drop 

in internal energy to 5%, or a minimum of 46.3 J. For the weight and impulse goals, we 

desire the minimum possible value while constraining the maximum value to the results 

from Step 2. This means our new weight target is 0.127 kg with a maximum constraint of 

0.213 kg and the new impulse target is 41.32 N*s with a maximum of 41.80 N*s. We use 

the same process from Step 2, to construct the cDSP, and run 19 weight sensitivity 

iterations, and then plot the solution spaces. In Figure 2.16 we show the three ternary 

plots for our three goals and the overlapping, satisficing ternary plot. 

a)  b)  

c)   d)   

Figure 2.16 Ternary plots showing the goal attainment for a) internal energy (Goal 

1), b) weight (Goal 2), c) impulse (Goal 3), and d) overlapping. 
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All design points satisfy our internal energy requirements. We do not find it 

necessary to make any preference boundary adjustments. When we combine the plots, we 

find almost all design points are feasible, leaving only one point outside our 

requirements. It is once again up to the designer to choose between the 18 satisficing 

design alternatives. This time, we expand our MCDM routine to rank 18 alternatives 

where we assign equal weight factors of 0.5 to the weight and impulse goals and no 

weight on internal energy. We list the top three results, with their associated goal and 

design variable values below in Table 2.14. 

Table 2.14 Top 3 Multi Criteria Decision Making (MCDM) ranked scenarios, goal 

values, and design variable values. 

Run (rank) Goal 1  

IE (J) 

Goal 2 

Wt. (kg) 

Goal 3 

Imp (N*s) 

Thickness 

(mm) 

Density 

(kg/m3) 

10 (1) 47.12 0.131 41.33 1.02 1061 

4 (2) 47.12 0.137 41.56 1.26 970.12 

7 (3) 47.12 0.137 41.56 1.26 970.12 

We select the number 1 ranked satisficing scenario, Scenario 10, as our Step 3 

composite shell design for verification in Step 4. Scenario 10 maintains the internal 

energy value from Step 2 within 5% (down from 49.52 J), shows a 37.6% reduction in 

system weight (down from 0.21 kg), and a 2.4% rise in impulse (up from 40.35 N*s). To 

verify this result, we reuse a FE mesh from the DOE simulations that has a shell 

thickness of 1 mm and change the material to match the suggested density value. We 

could construct our own composite from this specification, however, at this time we are 

limited to the composites available from RTP Co. We selected the RTP 103 CC (PP with 

20% E-glass fiber) because the composite density is 1030 kg/m3, which is only 2.95% 
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higher than the cDSP result. We show the FEA design variable input parameters and goal 

value results for comparison to the cDSP calculation in Table 2.15 below. 

Table 2.15 Step 3, scenario 1 compromise Decision Support Problem (cDSP) results 

compared to Finite Element Analysis (FEA) results. 

Parameter cDSP result FEA result error 

X1: thickness (t) 0.00102 0.0010 -1.56% 

X2: density (rho) 1061.3 1030 -2.95% 

Internal Energy (J) 47.12 48.30 2.49% 

Weight (kg) 0.1311 0.1295 -1.21% 

Impulse (N*s) 41.33 44.68 8.12% 

Compression (m) 0.0250 0.0251 0.34% 

When we compare the FEA verification result to the Step 3 cDSP results we see 

internal energy rise 2.49%, weight drop 1.21%, and impulse rise 8.12%. While the 

impulse value rise is outside the current design constraints, it is still below the system-

level constraint of 45.82 N*s. Comparing the Step 3 FEA results in Table 2.15 to the Step 

2 FEA results in Table 2.13, the internal energy value essentially remains constant (<1%) 

while the weight drops from 0.213 kg to 0.130 (39%). In other words, our final design 

would be able to dissipate approximately 81% of the impact force ((59.78 J - 48.3 

J)/59.78 J, where 59.78 J was the 100% design goal) from a 4 ft. NOCSAE standard drop 

test while meeting our adjusted weight design goal within 2% ((0.130 kg - 0.127 

kg)/0.127 kg, where 0.127 kg was the design goal).  

2.4 Summary and Conclusions 

In this chapter, we describe the elements of the Gero [57], Suh [58], Mistree et al. 

[59-61], and Nellippallil et al. [55, 67, 69-73] design process philosophies that form the 

foundation of our goal-oriented, inverse decision-based design method for helmet design. 
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Then we illustrated the efficacy of the method for multi-component product design in two 

ways. First, we exercised the CEF and cDSP constructs and solution space exploration 

with ternary plot tool to design a simplified section of the foam liner considering three 

conflicting goals. We use a flat representation of the helmet with only six foam liner pods 

in Section 2.2 so that we could exercise the method and constructs easily. This helped us 

to establish confidence in the method and constructs. We assumed we would be able to 

make changes to the components and reiterate with geometry from the actual helmet in 

the next exercise. In Section 2.3, we increased the complexity to design the top region of 

our prototype helmet and found satisficing solutions for the foam liner and the composite 

shell with respect to the same set of system-level goals. This helped us establish 

confidence that we could design at least two components within the same system 

boundary. The primary assumption here is that we will be able to reformulate the 

problem to include the additional bio-inspired components mentioned in Chapter 1. We 

also assume we will be able to design the other helmet regions that make up the complete 

assembly in parallel with respect to the same set of system level goals.  

While we were not primarily interested in finding “good” helmet results, we were 

interested in how well our system was able to attain the selected target values. Overall, 

we designed the foam liner to dissipate 81% of the impact energy the helmet region 

would receive from a 4-foot standard NOCSAE drop test. Then, we found a solution for 

the composite shell that reduced the weight by 39% while maintaining the energy 

dissipation goals. With respect to the system-level goals, we were close to achieving our 

target value of 100% dissipation for Goal 1. At that stage in the design process, we did 

not have good results for Goals 2 and 3, but because we have a new set of design 
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variables for the shell, we reset the goal targets and found good achievement for Goal 2, 

but poor achievement for Goal 3. However, the framework is modular and we assume we 

can add a third or fourth component in a similar fashion to focus on achieving Goal 3. 

Therefore, demonstrating the design of at least two components was foundational to 

future work with additional components.  

In this Chapter, we were able to demonstrate the following advantages of our 

selected method: 

• Enabling a product designer to explore the design of multiple components 

within the same system boundary while retaining the ability to make 

modifications as the problem changes thereby managing the complexities 

to account for the emergent properties that cannot be predicted.  

• For helmet design, the method allows us to define performance 

requirements for each component and connect their effects on the targeted 

system-level performance goals. 

• Supports solution space exploration to find a compromise between 

satisficing solutions and costly iterations 

• Supports simulation-based design 

• A modular and generic method to allow us to reformulate the problem at 

will and then substitute components to design for other helmets in the 

same product family. 

o Modularity exists in the problem formulation (Step 1) as we just 

mentioned, but also in the analysis (Steps 2 and 3) where the 
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designer may iterate preferences and goals to find satisficing 

solutions.  

Demonstrating the forward information flow and goal-oriented, inverse design of 

two components using linked cDSPs was foundational for future helmet design. In 

Chapter 3, we discuss the assumptions, method limitations, and future work regarding 

helmet design with our goal-oriented, inverse decision-based design method.
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CHAPTER III 

LIMITATIONS AND FUTURE WORK 

3.1 Current Limitations 

In this Chapter, we discuss the limitations in the problem formulation, the design 

analysis, and in the solution verification and then discuss our future work. To model the 

forward flow of information, we partition the helmet assembly into the individual 

components and arrange them in the order they receive impact energy. We limited the 

analysis to two simplified components, namely, the composite shell and the foam liner. 

Furthermore, we limit the geometry to one region of the helmet, as opposed to the entire 

helmet assembly. Individually designing the different helmet regions could be 

advantageous, but in the future, we need to design the regions with respect to the full-

scale helmet assembly. We also need to include parameters such as the Thermoplastic 

Polyurethane (TPU) wrap and Velcro for the foam liner, or the paint on the composite 

shell to increase the accuracy of our formulation. Finally, in this thesis we simply 

demonstrate the linkage and design of two components and then leave the method open 

ended for the addition of extra components. In the future, we need to include every 

component subject to design, such as the bio-inspired concepts mentioned in Section 1.3. 

These additions would affect the formulation of the design problem, but the method 

should be modular enough to expand to incorporate the additional components. The 

overall system-level goals would remain the same, the soft information flowing into each 
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component would be different, and the specific targets we adjust for every component 

following Step 2 in our method (see Figure 2.1). The method requirement to order the 

components in a sequential way introduces another limitation in the design problem 

formulation. With respect to energy transfer, we have a logical way to order the 

components. However, with respect to goals such as system weight, there is no logical 

order. As we saw in Section 2.3, if we design one component with a higher priority on a 

goal such as internal energy, then the next component is responsible for picking up the 

slack on a goal such as system weight. Therefore, the design variables found for the 

second component are highly biased towards weight reduction that resulted in a poor 

result for the third goal (impulse). Expanding the method to include additional 

components may mitigate this effect, however in the future we need to modify the 

method to explore parallel formulations. We also need the method to remain generic for 

product design beyond helmets or situations where information is not easily passed 

between components in a logical forward process. 

The design analysis for the current work was limited in three ways: the FEA, the 

cDSP, and solution space exploration with ternary plots. As we mentioned earlier, our 

method supports simulation-based design; therefore, we chose to collect the metamodel 

data from FEA simulations. These simulations are but approximations of reality and 

garner uncertainty in the pre-processing geometry, mesh, element type, material models, 

boundary conditions, calculations, etc. that results in uncertainty in the results. The 

metamodels are already approximations of the system response and carry their own 

uncertainty, not to mention the additional uncertainty brought in from the FEA. In the 

future, we can alleviate some of this uncertainty with more accurate FEA models, or 
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metamodels. However, the ultimate goal is to formulate our design problem to find 

solutions that are insensitive, or robust, against uncertainty, rather than attempting to 

eliminate it completely, which may be impossible. This design philosophy is called 

Robust Design. We discuss the Robust Design philosophy in greater detail in the next 

section. Because we only identified, not quantify, the sources of uncertainty in this thesis, 

we did not take full advantage of the cDSP. The cDSP was formulated by Bras et al. [65] 

to find satisficing solutions under uncertainty, or robust designs. We discuss the robust 

formulation of the cDSP in the next section. The cDSP can be an excellent tool for 

finding design variable values that satisfy a set of conflicting goals; however, with a 

fewer number of design variables, say 2 or 4, the results tend to congregate at the upper 

or lower variable bounds. For instance, if the foam depth design variable minimum and 

maximum were 25.4 and 50.8 mm, respectively, then almost all 19 results (from the 

weight sensitivity analysis) would either be 25.4 or 50.8 mm. This phenomenon might be 

avoided if we exercised more than the minimum (19) number of weight sensitivity 

iterations. This, or manually changing the design variable limits to force the program to 

find solutions in between the real constraints. Finally, the solution space exploration tool 

we selected, the ternary plots, limits our design formulation to three goals. In some cases, 

the designer may only be interested in one or two goals. In which case, more simplistic 

plots could show the relative goal attainments. However, in the case with more complex 

products, or multipurpose products, the designer may be interested in four or more 

system-level goals. For instance, in our future helmet design efforts, we will want to 

design for the current system-level goals, but also additional goals such as fatigue life or 
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the brain’s response. In which case, we need a way to visualize the solution space and 

find satisficing solutions for four or more conflicting goals.  

Our final limitation in this thesis was our method of verifying the cDSP results 

with a final FEA. For instance, after selecting a design result for the foam liner or 

composite shell (in Section 2.3), we built and submitted a final FEA to compare to the 

cDSP result. This is a simple form of verification, and some would argue this is more of 

an interpolation. It would be better if we could build the final design and compare to the 

cDSP and a FEA result. However, because we are designing an isolated region of the 

helmet there is not meaningful way to build and test the resulting design. In the future, 

when we can design the entire helmet assembly, we will be able to verify our design with 

manufacturing and testing according to the NOCSAE standard test methods. In the next 

section, we discuss the next steps of our future work. 

3.2 Future Work 

There are several areas for improvement, listed in the previous section, that our 

group is interested in pursuing to continue to refine this method for multi-component 

product design. First, we plan to reformulate the current problem with respect to Robust 

design, then we plan to expand and refine the method until we can design quality, robust 

helmets, using specific player requirements to protect their brain. 

3.2.1 Robust Helmet Design 

Robust design method for improving the quality of a product or system by 

reducing the effects of uncertainty, without directly attempting to eliminate the sources. 

The robust design method was originally developed by Genichi Taguchi [75] in 1980. 
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Taguchi introduced the use of signal-to-noise ratios, orthogonal arrays, linear graphs, and 

accumulation analysis for generating information about the system early in the design 

stages to save time and money resulting from poor quality products in the manufacturing 

stage. With any product or process being designed, there are parameters that are 

controllable (control parameters) and uncontrollable (noise). Noise is a form of aleatory 

uncertainty that comes from a changing environment, product damage, or manufacturing 

imperfections. In design, both noise and control factors will influence the ability of a 

product/process to achieve a target. For manufacturing applications, his method was 

applicable to systems that needed to reduce noise and bring quality on target. He 

developed the signal-to-noise ratio (S/N) as a predictor of quality loss. In Taguchi robust 

design, a designer searches for the maximum S/N ratio. Only considering noise in the 

design of a product or process is a severe limitation and has been criticized by Chen et al. 

[76]. Further advances in robust design have addressed the S/N ratio as well as the 

variance of the system. We show a graphical relationship between a mean and target as 

well as the quality distribution (variance) and tolerance distribution in Figure 3.1 below. 
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Figure 3.1 A signal-to-noise ratio used in robust design showing the relationship 

between the mean and target [65]. 

 From a statistical standpoint, in robust design, a designer is concerned with two 

things: bringing the mean on target and minimizing the S/N ratio. To bring the mean on 

target, the system bias must be reduced. If the target is achieved but variation in quality is 

large, some products may fall outside the given tolerance range. By maximizing the S/N, 

the bell shape curve narrows and variation in quality is reduced. If the mean is on target 

and the S/N is high, there is a high probability your products will be within the given 

tolerance range.  

 Typically, in a robust design problem, there are three types of parameters: noise 

factors, control factors, and responses [77]. A noise factor is an uncontrollable parameter 

that affects the performance of a product or process. Noise factors are directly related to 

natural, aleatory uncertainty (NU). Control factors are parameters which a designer can 

control. As such, they are commonly referred to as “design variables.” There are several 

types of control factors and they are directly related to three common forms of epistemic 

uncertainty, namely, Model Parameter Uncertainty (MPU), Model Structural Uncertainty 
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(MSU), and Propagated Uncertainty (PU). A response is the measurable performance 

output of a system. In robust design problems, the noise factors, control factors, and 

responses are commonly represented by a P-diagram [78]. We show the generic form of a 

P-diagram in Figure 3.2 below. 

 

Figure 3.2 The generic P-Diagram used in robust design to represent system control 

factors, noise factors, and responses. 

 In Figure 3.2 above, we see the control factors and noise factors are fed into our 

system analysis and the responses are simply the system output. In our case, the noise 

factors and control factors would be listed in the “Given” section of the cDSP. In Figure 

3.2, we refer to noise factors as “Type I Robust Design” and the control factors as “Type 

II Robust Design”. There are actually four types of robust design: 

• Type I Robust Design [75] – identify control factor (design variables) 

values that satisfy a set of performance requirement targets despite 

variation in noise factors. 

• Type II Robust Design [76] – identify control factor (design variable) 

values that satisfy a set of performance requirement targets despite 

variation in control and noise factors. 
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• Type III Robust Design [77] – Identify adjustable ranges for control 

factors (design variable), that satisfy a set of performance requirement 

targets and/or performance requirement ranges and are insensitive to the 

variability within the model.  

• Type IV Robust Design [77] – Identify adjustable ranges of control 

factors (design variables) values under potential uncertainty and 

uncertainty propagation in a design and analysis process chain; account 

for uncertainty in downstream activities and uncertainty propagation. 

Taguchi [75] proposed Type 1 robust design to handle the variation problems 

associated with noise factors. Noise factors are usually given as environmental factors, 

operating conditions, boundary conditions, or material property variances. Variation for 

each of these is considered irreducible but can be measured statistically. Wei Chen et al. 

[76] proposed the use of Type II robust design when dealing with control factors. Control 

factors in the system model usually relate to system performance. Some examples of 

control factors are geometric parameters, mass, electrical, mechanical, or chemical 

inputs, amounts of constituents in materials, process control inputs, etc. [77]. An example 

of Type I and II robust design is shown below in Figure 3.3. 
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Figure 3.3 Robust design for variations in noise factors (Type I) and control factors 

(Type II) proposed by Chen et al. [76]. 

Chen’s [76] P-Diagrams for Type I and Type II robust design are shown on the 

left half of Figure 3.3. The right half presents a schematic of the different concepts where 

Taguchi’s [75] Type I is shown in the upper left. Taguchi’s Type I robust design lets the 

designer choose between a set of control factor parameters so as to achieve the best S/N. 

In the schematic representation, control factor choices x = a, and x = b are presented. 

Option (a) represents a configuration that has a large amount of response variation with 

the variations of noise factors. However, with choice (b), the system response has very 

little variation. Assuming the mean is on target and the noise factors themselves cannot 

be reduced, the designer should select option b. Type I robust design only works if the 

mean of the system response is already on target. Type II robust design allows the 

designer to alter control factors so as to first bring the mean on target. Then the designer 

can select a design which also has low system response variation. The schematic in the 
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bottom left of Figure 3.3 represents a Type II robust design. Type II robust design is 

considered a dynamic problem where the response is a function of input parameters. As 

such, the curve in this figure represents a system response curve where changes in the 

design variable are along the x-axis and changes in system response are along the y-axis. 

Here, it is noted that the optimal design is found in the valley. However, at the optimal 

location, the variation in the system results in a large variation in system response. The 

designer should instead search for a location which has a mean on target and also 

demonstrates low response variation. This location is found at the plateau region and is 

the robust design. Both Type I and II robust design approaches are good for determining 

a set of parameters for a product or process that needs to be robust against real world 

variability. However, they both assume your analysis models are complete and accurate. 

Choi et al. [77] proposed Type III robust design to address the uncertainty in math or 

analysis models (MSU). Choi et al. [77] identifies the different forms of MSU come from 

linearization and discretization errors in FEA models, errors in computer codes, 

employment of uncertain knowledge, and other assumptions made from limited 

information. An example of Type III robust design is shown below in Figure 3.4. 
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Figure 3.4 An example objective function showing the variability in the optimal 

solution versus Type I, II, and III robust solutions [77]. 

In Figure 3.4, the solid black line is the same objective function used by Chen et al. 

[76] in Figure 3.3. The two dashed lines above and below the objective function represent 

uncertainty limits. Bounding boxes are useful for visualizing the variation in response 

between design methods. If a designer were to assume their models were complete and 

accurate, then they would select the optimal design found in the valley of the response 

curve. It is clear to see that when natural uncertainty (NU) and model structural uncertainty 

(MSU) are introduced, that optimal design can actually have the greatest variation in 

system response. In this particular problem, a response that large is bound to fall outside 

the acceptable range, which could be catastrophic. Even the type I/II robust design selected 

previously now has a larger system variation and is not the best solution. The orang box is 

clearly the best as it provides a design choice with the smallest system response variation. 

This decision can only be made by compounding Type I, II, and III robust design. Due to 

the highly non-linear problems faced by engineering designers it is important that efforts 
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be made to quantify MSU and implement Type III robust design. The final Type IV robust 

design corresponds to the uncertainty that may propagate through complex design 

processes involving multiple disciplines or analysis chains comes from: (a) changes in 

design specifications from downstream design activity, or (b) propagation and 

amplification of uncertainty from parallel or series analysis tasks [77]. Consider Olson’s 

[79] materials design paradigm example shown below in Figure 3.5. 

 

Figure 3.5 Olson’s [79] material design bottom-up and top-down analysis chain. 

Olson’s [79] material design bottom-up and top-down analysis chain in Figure 3.5 

above represents the linkage and overlap from a material processing, structure, property 

and performance. A designer either begins at the ground level with processing 

specifications, or at the top level with performance specifications and works their way 

through the chain. Often times, teams of scientists, engineers, and designers are working 

on the same design chain simultaneously. In complex models like Figure 3.5 analysis 

outputs can be passed to other inputs hierarchically, in parallel, or in series. Complex 
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design problems like these have high potential for propagating and amplifying uncertainty 

at any point in the design stage.  

We can incorporate Type I, II, and III robust design into our current goal-oriented, 

inverse decision-based design method with specific robust goals, where the design analysis 

is still supported by the CEF and the cDSP. However, Nellippallil et al. [73] proposes using 

two new metrics for Type I, II, and III with Design Capability Indices (DCIs) for Type I 

and II, and Error Margin Indices (EMIs) for Type III. Essentially the DCIs and EMIs are 

formulated in the cDSP where the DCIs correspond to solutions that are robust against NU 

and MPU and the EMIs correspond to MSU. The resulting “robust satisficing solutions” 

are solutions whose mean and variation satisfy the conflicting goals and constraints. With 

respect to helmet design, we would formulate DCIs for every design variable from NU and 

MPU information, and EMIs for every polynomial response model from MSU information. 

More information regarding the DCIs and EMIs formulation can be found in [54]. 

3.2.2 Future Design Method Expansion and Refinement 

In this thesis, we exercised the goal-oriented, inverse decision-based design 

framework to lay the foundation for helmet design. We were able to first map design 

requirements between two components with respect to a common set of system-level 

goals. Then, we found designs for both components in an inverse fashion with respect to 

these goals. While we demonstrate the method to design two components, this work was 

foundational for future helmet design where we will expand the current formulation to 

model and design the entire helmet system. 
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To accomplish the complete helmet design, we will first update the current 

method to include the bio-inspired inner shell with sutures and the stress wave dampers. 

We believe both components may play an important role in dissipating the stress waves, 

thus helping the system achieve the impulse goal (goal 3). Next, we will include the full-

scale components including Velcro and TPU film for the foam liner, paint on the 

composite shell, etc. Then we will reformulate the system input and desired output using 

real player specific information. After we are satisfied with the results from the helmet 

region, we will expand the problem to a full-scale helmet where we can make simple 

modifications to design the other helmet regions including the brain’s response as a 

performance goal. In the full-scale analysis, we believe the individual helmet regions 

could be modeled as the individual components were here in this thesis, and for each 

analysis, we would design the individual components with respect to the region goals. 

Once we have a fully functioning, full-scale design problem that describes the individual 

regions, and their associated components, with respect to the brain’s performance, we can 

then tailor the design problem to design helmets for individual football players. Upon 

request, we could generate a helmet design specific for a player’s head shape, age, brain 

injury history, and position. Finally, we believe our framework is general enough that we 

could repeat this process to design helmets for other sports such as hockey, lacrosse, or 

baseball.
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